Targeting cellular metabolism with CPI-613 sensitizes pancreatic cancer cells to radiotherapy

Husain Yar Khan PhD, Mandana Kamgar MD, Amro Aboukameel MS, Sahar Bannoura MS, Brian Y. Chung PhD, Yiwei Li MD, Mohammed Najeel Al Hallak MD, Philip A. Philip MD, PhD, Susan Tsai MD, Sanjeev Luther, William A. Hall MD, Asfar S. Azmi PhD

PII: S2452-1094(22)00228-7
DOI: https://doi.org/10.1016/j.adro.2022.101122
Reference: ADRO 101122

To appear in: Advances in Radiation Oncology

Received date: 14 September 2022
Accepted date: 31 October 2022

Please cite this article as: Husain Yar Khan PhD, Mandana Kamgar MD, Amro Aboukameel MS, Sahar Bannoura MS, Brian Y. Chung PhD, Yiwei Li MD, Mohammed Najeel Al Hallak MD, Philip A. Philip MD, PhD, Susan Tsai MD, Sanjeev Luther, William A. Hall MD, Asfar S. Azmi PhD, Targeting cellular metabolism with CPI-613 sensitizes pancreatic cancer cells to radiotherapy, Advances in Radiation Oncology (2022), doi: https://doi.org/10.1016/j.adro.2022.101122

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
CPI-613 sensitizes PDAC cells to RT

[Article Full Title]
Targeting cellular metabolism with CPI-613 sensitizes pancreatic cancer cells to radiotherapy

[Short Running Title]
CPI-613 sensitizes PDAC cells to RT

[Author Names]
Husain Yar Khan1, PhD; Mandana Kamgar2, MD; Amro Aboukameel1, MS; Sahar Bannoura1, MS; Brian Y. Chung2, PhD; Yiwei Li1, MD; Mohammed Najeeb Al Hallak1, MD; Philip A. Philip3, MD, PhD; Susan Tsai2, MD; Sanjeev Luther4, William A. Hall2*, MD; Asfar S. Azmi1*, PhD
#Equal Contributors

*Corresponding authros

[Author Institutions]
1Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
2Medical College of Wisconsin, Milwaukee, WI 53226, USA
3Henry Ford Health Systems, Detroit, MI 48202, USA
4Cornerstone Pharmaceuticals, Cranbury, NJ 08512, USA.

[Corresponding Author Name & Email Address]
Asfar S. Azmi (azmia@karmanos.org); William A. Hall (whall@mcw.edu)

[Author Responsible for Statistical Analysis Name & Email Address]
Husain Yar Khan (khanh@karmanos.org)

[Conflict of Interest Statement for All Authors]
Husain Yar Khan, Amro Aboukameel, Sahar Bannoura, Brian Y. Chung, Yiwei Li, and Susan Tsai: Conflict of Interest: None
Mandana Kamgar: Grants or contracts: Cornerstone Pharmaceuticals, Institutional grant for conduct of phase I clinical trial.
Philip A Philip: Grants or contracts: Cornerstone Pharmaceuticals, Institutional grant for conduct of phase III clinical trial. Consulting fees: Trisalus Life Sciences, Merck, Bayer, Servier, Seattle Genetics, Guardant, Payment or Honoraria: Bayer, BMS, Astra Zeneca, Incyte, Daiichi. Data Safety Monitoring Board or Advisory Board: Erytech, Oncolytics, Syneos
Sanjeev Luther: Stock or Stock Options: Cornerstone Pharmaceuticals, Options.
William A. Hall: Other: Elekta, Institutional research support.
Asfar S. Azmi: Grants or contracts: NIH NCI R37CA215427, NIH NCI R01CA240607, Karyophaar, Therapeutics. Consulting fees: GLG, Guidepoint. Payment or honoraria: Karyopharm Therapeutics, Speaker bureau.

[Funding Statement]
Funding: None.

[Data Availability Statement for this Work]
Research data are stored in an institutional repository and will be shared upon request to the corresponding author.

[Acknowledgements]
CPI-613 sensitizes PDAC cells to RT

None
CPI-613 sensitizes PDAC cells to RT

ABSTRACT

Purpose: Local tumor progression is a cause of significant morbidity and mortality in pancreatic ductal adenocarcinoma (PDAC) patients with surgically unresectable disease. Novel and effective approaches to accomplish durable local control are urgently needed. We tested whether CPI-613 (Devimistat), a first-in-class investigational small molecule inhibitor of mitochondrial metabolism, was capable of altering cancer cell energy metabolism and sensitize PDAC cells to radiation therapy (RT).

Methods and Materials: The effect of a combined treatment of RT with CPI-613 on the viability of, clonogenic potential of, and cell death induction in PDAC cells (MiaPaCa-2 and Panc-1) was determined using a trypan blue dye exclusion assay, a colony formation assay, and a 7-AAD assay, respectively. The synergistic effects of CPI-613-RT and chemotherapeutic agents (gemcitabine or 5-fluorouracil [5-FU]) was measured in MiaPaCa-2 cells using an MTT and spheroid formation assay. Changes in energy metabolism were determined by profiling metabolites treated with either RT, CPI-613, or both using liquid chromatography-mass spectrometry.

Results: This study demonstrates that combination of single fraction RT (2 and 10 Gy) with CPI-613 significantly inhibits PDAC cell growth compared to RT alone. Molecular analysis revealed inhibition of α-ketoglutarate dehydrogenase at the protein level. In addition, we demonstrate enhanced cell death of PDAC cells when treated with RT-CPI-613 combination. Targeted metabolomic analysis on PDAC cells post CPI-613-RT treatment revealed alterations in key mitochondrial metabolites, with broader target engagement by the combination treatment, indicating the sensitization of CPI-613-treated PDAC cells to RT. Furthermore, a combination
CPI-613 sensitizes PDAC cells to RT treatment of CPI-613 with either gemcitabine or 5-FU in the presence of 2 Gy RT synergistically inhibits PDAC cell proliferation.

Conclusions: Our results support a novel combination of CPI-613-RT that warrants further pre-clinical and early-phase clinical investigations. A Phase I trial designed to identify the maximum tolerated dose of CPI-613 in combination with chemo-RT in PDAC patients was recently initiated (NCTXXX).
CPI-613 sensitizes PDAC cells to RT

INTRODUCTION

Pancreatic cancer remains an aggressive and lethal disease and is projected to be the second leading cause of death due to cancer in the United States by 2025 [1]. Local tumor progression is the leading cause of hospitalization for those with unresectable PDAC, a substantial contributor to pancreatic cancer morbidity, and responsible for mortality in one-third of patients [2-4]. While conventional chemoradiotherapy among patients with locally advanced PDAC modestly improves local disease control [5], the risk of local progression remains significant. Recently, ablative radiation has shown impressive results in select PDAC patients [6]. However, the use of ablative radiation is limited to those patients with anatomically favorable tumors [7, 8]. An urgent need exists to develop innovative therapeutic strategies that effectively control local PDAC progression.

It is well-known that metabolic reprogramming and enhanced mitochondrial function, both hallmarks of PDAC biology, facilitate tumor cell plasticity and promote chemo- and radio-resistance [9]. Cancer cell mitochondria are critical regulators of deranged tumor metabolism and have been shown to guide molecular pathways involved in radio-resistance [10]. Emerging data also indicate that mitochondrial metabolites modulate the response of cancer cells to RT primarily by impacting the ability to repair DNA [11]. These observation makes them an optimal candidate for novel radio-sensitization strategies, as these characteristics are unique to PDAC cells, and are limited in normal cells.

CPI-613, a lipoic acid analog, selectively inhibits pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (α-KGDH)/ 2-oxoglutarate dehydrogenase (OGDH) in tumor cells, resulting in disruption of the Krebs cycle and ultimately leading to selective tumor cell death [12]. CPI-613 in combination with standard of care chemotherapies has shown significant anti-
CPI-613 sensitizes PDAC cells to RT tumor activity and low toxicity in patients with metastatic PDAC [13, 14]. We hypothesized that administration of CPI-613 in combination with conventional RT, either with gemcitabine (Gem-RT) or without (RT), would induce a metabolic shift away from mitochondrial respiration, thereby enhancing tumor cell death compared to conventional therapies alone.

MATERIALS AND METHODS:

Cell lines, drugs, and irradiation

MiaPaCa-2 and Panc-1 cells were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA). MiaPaCa-2 and Panc-1 cell lines were maintained in DMEM (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/mL streptomycin in a 5% CO₂ atmosphere at 37°C. Cell lines were tested and authenticated by the Applied Genomics Technology Center, a core facility, by short tandem repeat (STR) profiling using the PowerPlex® 16 System (Promega, Madison, WI, USA). Mycoplasma testing was routinely performed on cell lines by PCR. All experiments were performed within 20 passages of the cell lines. CPI-613 (Adooq Bioscience, Irvine, CA, USA) was dissolved in DMSO to make 200 mM stock solutions. The drug control used for *in vitro* inhibitor experiments was cell culture media containing 0.1% DMSO. Radiation treatment was done using an X-RAD 320 Irradiator (manufactured by Precision X-Ray) utilizing the following settings: 320 kV; 12.5 mA; Dose = 319.1 cGy/min (Filter: 2mm Al, SSD: 50) 2 Gy-38 sec and 10 Gy-188 sec.

Trypan Blue assay
CPI-613 sensitizes PDAC cells to RT

Cells were seeded at a density of 5×10^4 viable cells/well in six-well plates (Costar, Cambridge, MA, USA) and were subjected to treatment with either CPI-613, radiation or both the next day. After 72 h of treatment, cell viability was determined by a Trypan Blue dye exclusion test [Trypan blue (0.4%), Sigma Chemical Co. St. Louis, MO, USA].

Preparation of total protein lysates and Western Blot analysis

1×10^6 MiaPaCa-2 cells were grown in 100 mm Petri dishes overnight. The following day, cells were treated with either CPI-613 alone, radiation alone, or both for 24 h. Cells were lysed in RIPA buffer to extract total protein and protein concentrations were measured using a BCA protein assay (PIERCE, Rockford, IL, USA). Protein lysates (40 μg total) from treated and untreated cells were resolved using 10% SDS-PAGE and transferred onto a nitrocellulose membrane. Membranes were incubated with the following primary antibodies (Cell Signaling Technology, Danvers, MA, USA) at 1:1000 dilution in 3% non-fat dry milk: anti-OGDH (#26865), anti-PDH (#3205). Anti-β-actin (# sc-47778; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used at a dilution of 1:3000. Incubation with 1:2000 diluted HRP-linked secondary antibodies (#7074/7076; Cell Signaling, Danvers, MA, USA) in 3% non-fat dry milk was subsequently performed at room temperature for 1 hour. The signal was detected using the ECL chemiluminescence detection system (Thermo Fisher Scientific, Waltham, MA, USA).

Colony formation assay

MiaPaCa-2 and Panc-1 cells were seeded at a density of 50,000 cells per well in six-well culture plates and treated with either CPI-613 alone, radiation alone, or a combination of both for 72 h. After treatment, cells were trypsinized and 500 cells were re-plated in six-well plates for an additional ten days. After the incubation period, media was removed from the wells, and colonies
CPI-613 sensitizes PDAC cells to RT

were fixed with methanol and stained with crystal violet for 15 minutes. The plates were then washed and air-dried before colonies were photographed.

Quantification of non-viable cells by 7-Amino-actinomycin D (7-AAD)

Viable, non-viable, and apoptotic cells were detected using a 7-AAD assay (Calbio-chem-Novabiochem, La Jolla, CA) and flow cytometric analysis. PDAC cells (MiaPaCa-2 and Panc-1) were seeded in six-well culture plates at a density of 50,000 viable cells per well and exposed to either CPI-613 alone, radiation alone, or a combination of both for 72 h. After treatment, cells were collected, washed with PBS, and stained with 7-AAD. Stained cells were then analyzed using a FACScan (Becton Dickinson, Mountain View, CA). Data on 20,000 cells were acquired and processed using the Lysys II software (Becton Dickinson). Scattergrams were generated by combining forward light scatter with 7-amino-actinomycin D fluorescence.

MTT assay and synergy analysis

MiaPaCa-2 cells were seeded in 96-well culture plates at a density of 3 x 10^3 cells per well and treated the next day with either CPI-613 alone, gemcitabine/5-FU alone, or in combination with one another, followed by exposure to 2 Gy radiation. After 72 h, an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed according to procedures described previously [15]. The resulting cell proliferation data (six replicates per treatment) were used to perform synergy analysis employing the CalcuSyn software (Biosoft, Cambridge, UK).

Spheroid formation assay

MiaPaCa-2 cells were trypsinized, collected as a single-cell suspension using a 0.45 μm cell strainer, and resuspended in 3D tumorsphere medium XF (PromoCell, Heidelberg, Germany).
CPI-613 sensitizes PDAC cells to RT

One thousand cells were plated in each well of an ultra-low attachment 6-well plate (Corning, Durham, NC, USA). Cells grown in a spheroid formation medium were treated with either CPI-613 alone, gemcitabine alone, or in combination, followed by exposure to a 2 Gy dose of radiation (three replicates for each treatment). After treatment, spheroids were observed under an inverted microscope and images were captured at 10X magnification.

Metabolomic Analysis

1 x 10⁶ MiaPaCa-2 cells were seeded in 60 mm Petri dishes and incubated at 37°C in a 5% CO₂ incubator until the cells were 80% confluent. Cells were then either irradiated using a 2 Gy dose of radiation, exposed to 200 μM of CPI-613, or a combination of both for 6 h and 24 h. Each treatment was carried out in five replicates. After the treatment period, cells were washed twice with ice-cold PBS, the PBS was completely removed, and cells were collected in 1 mL ice-cold methanol. Changes in metabolites were detected by liquid chromatograph-mass spectrometry at the XXX Pharmacology Core.

Statistical analysis

Wherever appropriate, the data were subjected to a Student's t-test using GraphPad Prism software (La Jolla, CA). P < 0.05 was considered statistically significant.

RESULTS:

RT in combination with CPI-613 reduces the viability of PDAC cells in vitro and enhances CPI-613-induced downregulation of α-ketoglutarate dehydrogenase
CPI-613 sensitizes PDAC cells to RT

RT targets nuclear and mitochondrial DNA and therefore, we anticipated that mitochondria-targeted agents would synergize with RT-based therapies. To validate this, we evaluated the impact of an RT-CPI-613 combination treatment on the viability of PDAC cells in vitro. As evident from the photomicrographs of MiaPaCa-2 cells subjected to RT-CPI-613 combination treatments, 2 Gy and 10 Gy doses of RT showed enhanced cytotoxicity when combined with CPI-613 (Figure 1A). Viability of MiaPaCa-2 cells was significantly inhibited by the combination treatments (Figure 1B). Similar results were obtained with Panc-1 cells (Supplementary Figure 1). Western blot analysis showed pronounced downregulation of the mitochondrial TCA cycle enzyme α-ketoglutarate dehydrogenase (OGDH) in MiaPaCa-2 cells that received RT-CPI-613 combination treatments (Figure 1C).

RT and CPI-613 combination suppresses the clonogenic potential of PDAC cells

In a colony formation assay, a reduced number of colonies were observed in RT-CPI-613 combination compared to single-agent treatments, indicating that the combination treatment effectively suppressed the ability of MiaPaCa-2 and Panc-1 cells to form colonies. Suppression of colony formation was more pronounced using a higher dose of RT (10 Gy; Figure 2).

Combination of CPI-613 with RT enhances PDAC cell death

Given that CPI-613 impacts mitochondrial enzymes and the mitochondria are the hub for intrinsic apoptosis, we evaluated whether the combination of RT and CPI-613 could induce cell death in PDAC cells. The results shown in Figure 3 clearly demonstrate that compared to single-agent treatment, the combination effectively enhanced cell death in MiaPaCa-2 and Panc-1 cells, as detected by a 7-AAD assay. These results further corroborate our hypothesis that RT-CPI-613 is an effective combination regimen against difficult-to-treat PDAC.
CPI-613 sensitizes PDAC cells to RT

CPI-613 synergizes with chemo-RT

We then tested whether adding gemcitabine (Gem) or 5-fluorouracil (5-FU) to CPI-613-RT further enhanced the efficacy of the combination. As seen in Figure 4A, the addition of either Gem or 5-FU enhanced the efficacy of CPI-613-RT. Synergy analysis using the CalcuSyn software showed combination index values of less than 1, which indicate synergistic effects of the combination on cell growth inhibition. However, the Gem-CPI-613-RT synergy value was lower than 5-FU-CPI-613-RT. The synergistic effect of combining Gem with CPI-613 was also observed using a 3D spheroid formation assay. Gem-CPI-613 reduced the size of spheroids formed by MiaPaCa-2 cells as compared to either of the single agents (Figure 4B; top row). This effect was further augmented by low dose RT (Figure 4B; bottom row), which underscores the efficacy of Gem-CPI-613-RT combination regimen for PDAC therapy.

RT-CPI-613 combination treatment alters metabolites in PDAC cells

Given the wide-ranging targets altered by RT and several mitochondrial targets of CPI-613, reductionist evaluations of selected pathways would not be an efficient way to understand the synergy between radiation therapy and CPI-613. Taking a holistic approach, we performed targeted metabolomic analysis post CPI-613-RT to understand the spectrum of pathways altered upon combination treatment. As seen in Figure 5A and B, a greater number of metabolites were altered in the combination treatment compared to single-agent treatment. We also observed a unique set of metabolites altered in the combination treatment at 6 h and 24 h (Figure 5C and D). The impact on metabolites was greater at 24 h compared to 6 h. A total of 103 metabolites showed significant alterations (p<0.05) after 24 h treatment, while only 69 metabolites were significantly altered after 6 h treatment. These results demonstrate that RT-CPI-613 combination
CPI-613 sensitizes PDAC cells to RT

induces a metabolic change in PDAC cells and further supports the use of metabolism targeting agents in combination with RT for PDAC.

DISCUSSION:

PDAC is a devastating disease that carries an average 5-year survival rate of about 11%, among the lowest of all cancers in the United States [16]. While local tumor progression is responsible for mortality in approximately one-third of PDAC patients [3], conventional chemoradiation falls short in providing durable local control of tumor in a significant subset of patients with locally advanced disease [5]. Here, we provide in vitro evidence demonstrating that CPI-613 may serve as a vital component of a more effective chemo-RT regimen for PDAC treatment. We observed that PDAC cells pre-exposed to 2 Gy dose of RT and treated with CPI-613 caused a significant decline in cell viability compared to cells receiving RT alone. A similar effect was also seen with a relatively high dose of single fraction RT (10 Gy). Further, using a clonogenic assay, we found that a combination of CPI-613 with a 2 Gy dose of RT leads to a remarkable reduction in the number and size of colonies formed by PDAC cells compared to those formed by cells treated with either therapy alone. Moreover, CPI-613, combined with 5-FU or Gem, exhibited synergistic effects on the growth inhibition of PDAC cells subjected to RT.

Our study, for the first time, reports the potential value of CPI-613 as a radiosensitizer. The safety and efficacy of CPI-613 in combination with chemotherapy have been evaluated previously in early phase PDAC trials [13, 14]. Given these promising findings, a multicenter phase III randomized trial (AVENGER 500) was conducted to evaluate the efficacy of CPI-613 and modified FOLFIRINOX (mFFX) compared to FOLFIRINOX (FFX) in treatment-naïve
CPI-613 sensitizes PDAC cells to RT

patients with metastatic PDAC [17]. Median OS, the primary endpoint for the trial, was not statistically significant between the two arms. Although the study did not meet the primary endpoint, a post hoc subgroup analysis of female patients with an ECOG performance score of 0 revealed CPI-613 and mFFX was associated with a significant increase in median OS (20.4 months, n=28) compared to FFX (10.4 months, n=30; HR=0.44; p=0.03).

While the AVENGER 500 trial failed to demonstrate that CPI-613 in combination with mFFX chemotherapy improves OS in metastatic PDAC patients, our pre-clinical studies reported here were designed to evaluate a different indication: the value of CPI-613 as a radiosensitizer. We intend to follow up on these findings by conducting a phase I dose-escalation study (NCTXXX) of CPI-613 in combination with Chemo-RT in patients with PDAC deemed inoperable (locally advanced, oligometastatic, or medically inoperable) that, by institutional pancreatic tumor board or multidisciplinary review, would otherwise benefit from definitive local control of the primary tumor. Since the efficacy and safety of capcitabine in combination with CPI-613 has yet to be tested and given the pre-clinical data demonstrating that CPI-613-RT shows greater synergy with Gem than 5-FU (Figure 4), our trial will utilize a Gem-based (400 mg/m², once weekly) chemotherapy schedule with RT (Gem-RT). Gem-RT will be administered in combination with long-infusion CPI-613 (starting dose 500 mg/m² with a maximum tested dose of 1,500 mg/m²) once per week over a six-week period. Because the post-hoc results of AVENGER 500 suggested possible differences in outcomes among females, we will also evaluate the efficacy of CPI-613 in combination with Gem-RT based on sex as an exploratory endpoint.

There are some limitations to the pre-clinical approach and data examining CPI-613’s ability to radiosensitize PDAC cells. First, we used two established cell lines to draw our conclusions. Although 3D cultures were also used, the model is derived from cell lines and not primary
CPI-613 sensitizes PDAC cells to RT

PDAC tissue-derived cells. The use of KPC mouse tumor-derived cells, primary cells, or organoid models would have further strengthened our findings. We also showed the efficacy of a CPI-613-RT combination strategy using exclusively *in vitro* assays. The combination could be tested in patient-derived or cell line-derived *in vivo* tumor models. Finally, our metabolomic analysis revealed a number of key synergy metabolites that were not validated using other assays. Additional work may identify actionable targets and biomarkers for the planned clinical study combining CPI-613-RT in metastatic PDAC. Despite these limitations, our findings provide a proof of concept on the utility of CPI-613 in combination with Gem-RT for PDAC. We expect to validate our *in vitro* findings using xenograft models alongside Phase Ib/II clinical investigations.

Increasing the effectiveness of conventional chemoradiation therapies using CPI-613 has the potential to improve local control of disease, enhance patient quality of life, decrease morbidity, and extend overall survival without additional toxicity to the patient. Furthermore, better local control will lead to a decrease in disease-related hospitalization and a reduction in medical care costs related to complications caused by local progression (e.g., biliary obstruction, systemic infection due to such obstruction, gastrointestinal bleeding, gastrointestinal obstruction, and pain). The ongoing Phase I clinical trial will determine the MTD of CPI-613 along with Gem-RT (NCTXXX). We further plan to test the effectiveness of this combination in a multi-center phase II study in the neoadjuvant-locally advanced setting.

REFERENCES:
CPI-613 sensitizes PDAC cells to RT

CPI-613 sensitizes PDAC cells to RT

CPI-613 sensitizes PDAC cells to RT

LEGENDS TO FIGURES:

Figure 1: Effect of combining RT with CPI-613 on the viability of PDAC cells and the cellular targets of CPI-613. [A] Representative photomicrographs of cells subjected to the indicated doses of radiation and 300 μM CPI-613 for 72 h were captured at 10X magnification on an inverted light microscope. [B] Cell viability was determined by Trypan Blue dye exclusion assay at the end of the experiment and plotted as average number of viable cells ± standard error of the mean (SEM) of four replicates. * p < 0.05 compared to control; # p < 0.05 to 2 Gy RT alone; † p < 0.05 compared to CPI-613 alone. [C] Protein expression of PDH and OGDH (cellular targets of CPI-613) in MiaPaCa-2 cells irradiated with 2 Gy or 10 Gy radiation and treated with 300 μM of CPI-613 for 72 h was analyzed by Western blotting.

Figure 2: Effect of RT-CPI-613 combination on the colony formation potential of PDAC cells. Representative images of colonies formed by [A] MiaPaCa-2 and [B] Panc-1 cells exposed to the indicated doses of radiation either in the absence or presence of CPI-613 (200 μM). Colony formation assay was performed as described in Methods.
CPI-613 sensitizes PDAC cells to RT

Figure 3: Effect of RT-CPI-613 combination on inducing cell death in PDAC cells. Scattergrams showing flow cytometric analysis of apoptotic cells using 7-AAD assay where MiaPaCa-2 [A] and Panc-1 [B] cells were exposed to 10 Gy radiation either in the absence or presence of CPI-613 (200 μM).

Figure 4: Effect of combining RT-CPI-613 with chemotherapeutic drugs. [A] MiaPaCa-2 cells were treated with either Gem (90 nM) or 5-FU (12 μM) in the presence of CPI-613 (300 μM) followed by exposure to 2 Gy RT. An MTT assay was performed after 72h of treatment. Cell viability (% of control) was plotted as an average of six replicates ± SEM. Combination index (CI) was calculated using CalcuSyn software. CI < 1 indicates synergistic effect. **P < 0.01** [B] MiaPaCa-2 cells were seeded in ultra-low attachment plates and later treated with Gem (100 nM) or CPI-613 (300 μM) either as single agents or in combination followed by irradiation with 2 Gy radiation. Each treatment was performed in triplicate. After one week, spheroids were observed under an inverted light microscope and their images were captured at 10X magnification.

Figure 5: Metabolomic analysis of metabolites altered upon CPI-613-RT combination treatment. MiaPaCa-2 cells were exposed to either CPI-613, 2 Gy RT or their combination for 6 h or 24 h. Targeted metabolomics was then performed as described in Methods. Statistically significant and differentially expressed metabolites are presented (p<0.05). [A and B] Venn diagram showing increased number of altered metabolites in the combination. [C and D] heat maps showing top prioritized targets in 6 h and 24 h treatment, respectively.
CPI-613 sensitizes PDAC cells to RT
CPI-613 sensitizes PDAC cells to RT