From alpha to omicron: a radiation oncology network’s biocontainment-based COVID-19 response experience

Yilin Cao MD, Valeria Fabre MD, Roberta Anderson, Gregory Bova, Annette N. Souranis, Valerie Briner, Lawrence R. Kleinberg MD, Sarah Han-Oh PhD, Jean L. Wright MD, Akila N. Viswanathan MD

PII: S2452-1094(22)00200-7
DOI: https://doi.org/10.1016/j.adro.2022.101094
Reference: ADRO 101094

To appear in: Advances in Radiation Oncology

Received date: 16 May 2022
Accepted date: 27 September 2022

Please cite this article as: Yilin Cao MD, Valeria Fabre MD, Roberta Anderson, Gregory Bova, Annette N. Souranis, Valerie Briner, Lawrence R. Kleinberg MD, Sarah Han-Oh PhD, Jean L. Wright MD, Akila N. Viswanathan MD, From alpha to omicron: a radiation oncology network’s biocontainment-based COVID-19 response experience, Advances in Radiation Oncology (2022), doi: https://doi.org/10.1016/j.adro.2022.101094

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
From alpha to omicron: a radiation oncology network’s biocontainment-based COVID-19 response experience

Short Running Title: Rad Onc Biocontainment COVID Response

Yilin Cao MD¹, Valeria Fabre MD²,³, Roberta Anderson¹, Gregory Bova⁴, Annette N. Souranis¹, Valerie Briner¹, Lawrence R. Kleinberg MD¹, Sarah Han-Oh PhD¹, Jean L. Wright MD¹, Akila N. Viswanathan MD¹

¹Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine
²Department of Medicine – Infectious Disease, Johns Hopkins University School of Medicine
³Department of Hospital Epidemiology and Infection Control, The Johns Hopkins Hospital
⁴Johns Hopkins Health System

Corresponding Author: Akila N. Viswanathan, MD, MPH, MSc, Director, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 401 N. Broadway, Suite 1440, Baltimore, MD 21287

anv@jhu.edu

Descriptive Statistics by:

Yilin Cao, MD
Linda.cao@jhmi.edu

Abstract

Background and purpose

To develop the safest possible environment for treating urgent COVID+ patients, we describe the unique construction of negative air pressure CT simulator and treatment vaults in addition to screening, delay and treatment protocols and their evolution over the course of the COVID pandemic.

Materials and methods
Construction of large HEPA filter air flow systems into existing ductwork in CT simulator rooms and photon and proton treatment vaults was attempted to create negative pressure rooms. An asymptomatic COVID screening protocol was implemented for all patients prior to initiation of treatment. Patients could undergo simulation and/or treatment in the biocontainment environments according to a predefined priority scale and protocol. Patients treated under the COVID-19 protocol from 6/2020 to 1/2022 were retrospectively reviewed.

Results

Negative airflow environments were created across a regional network, including a multi-gantry proton therapy unit. In total, 6525 patients were treated from 6/2020 through 1/2022 across 5 separate centers. The majority of COVID positive patients had treatment deferred when deemed safe. A total of 42 COVID positive patients who were at highest risk were treated under the COVID-19 biocontainment protocol, in contrast to those who were placed on treatment break. For 61.9% of patients, these safety measures mitigated an extended break during treatment. The majority (64.3%) of patients were treated with curative intent. The median number of biocontainment sessions required by each patient was 6 (range: 1-15), prior to COVID clearance and resumption of treatment in a normal air flow environment.

Conclusion

Constructing negative pressure environments and developing a COVID-19 biocontainment treatment protocol allowed for the safe treatment of COVID positive radiation oncology patients within our department and strengthens future biopreparedness. These biocontainment units set a high standard of safety in radiation oncology during the current or for any future infectious outbreak.
Introduction

During the SARS-CoV-2 pandemic, the medical field was forced to rapidly reconstruct and reorganize the delivery of patient care. While the initial response of many hospitals was to severely limit – if not completely halt – elective outpatient procedures and visits, the delivery of cancer care was challenged in unique ways, given the necessity to conduct lifesaving cancer treatment as soon as possible. In the field of radiation oncology and beyond, this led to a swift response, including the adoption of telemedicine [1], the publication of consensus guidelines for cancer management during the pandemic [2]–[4], and the shift to virtual medical student clerkships and residency interviews [5], [6].

In immunocompromised cancer patients, the delicate balance of treating life-limiting malignancies and risk of COVID-19 infection was studied early in the pandemic in the pre-vaccination era. Initial data indicated that combining cancer care and COVID therapy simultaneously resulted in poor outcomes, and that delaying cancer care until COVID symptoms had resolved resulted in better outcomes [7]. Therefore, most patients diagnosed as COVID positive had radiation treatment delayed for a minimum of 2 or more weeks. However, it was clear that radiation therapy was a resource that needed to remain available and accessible to patients, and in the safest manner possible. Many clinics adopted the paradigm of treating patients at the end of the day when known to be positive. However, over the course of the pandemic, the virulence of SARS-COV-2 variants increased, resulting in high risk for unintended spread of the virus from asymptomatic patients to others. Confined spaces within the radiation oncology clinic such as the simulator and linear accelerator vaults required select patients (e.g. head and neck cancer patients) to remove their N95 or surgical face mask in order to have an immobilization mask placed for treatment. For asymptomatic COVID positive patients, this would result in contaminated air space and a risk of heightened infectivity from a patient unaware of their COVID status to another patient or staff member. In an attempt to maximize safety, we implemented asymptomatic testing and the construction of biocontainment negative air flow spaces to minimize the spread of COVID and set the highest standard of care that could be achieved.
The [XXX] Radiation Oncology network is comprised of 5 hospitals spanning [XXX] (3 sites); [XXX] (1 site); and [XXX] (1 site) in the United States, which includes 6 CT simulators, 13 photon-based linear accelerators, and 3 proton therapy gantries. In collaboration with our Hospital Epidemiology and Infection Control (HEIC) colleagues, we implemented asymptomatic screening protocols for patients initiating RT and developed a COVID-19 biocontainment treatment protocol after construction of negative pressure CT simulator room and linear accelerator treatment vault environments at our main campus early in the pandemic, a biopreparedness effort which expanded after subsequent waves of variants resulted in high infection rates despite vaccination.
Methods

1. Creating negative pressure CT simulator rooms and treatment vaults

In April 2020, an engineering project manager reviewed existing rooms and ventilation system/air flows within our main campus clinic in conjunction with HEIC. One CT simulator room and one linear accelerator treatment vault [XXX] were chosen based on size and location within the department as pilot areas to provide negative air flow environments to ensure the safe treatment of COVID positive patients in the pre-vaccination era. Importantly, the selected vault housed a linear accelerator that was most treatment plan-compatible with other machines both at the main campus and at our regional campuses in effort to facilitate a smooth transition of patient care with minimal re-planning requirements. Patients suspected of or positive for COVID infection were treated at the end of the day with a terminal clean prior to entry of the next patient in the room.

The simulator room was minimally negative pressure (27.99 air exchange per hour) and the addition of a high efficiency particular air (HEPA) filter increased this level, but a donning and doffing area needed to be constructed to reduce the risk of healthcare worker infection. The linear accelerator vault was positive pressure (5.94 air exchanges per hour) and required placement of two HEPA filters to convert the room into negative pressure and to HEPA-filter the air before returning to the air handling units that supply the rest of the building. The treatment vault space did not allow for building a donning and doffing area inside the room, so a separate area was built outside the room. The control panel to operate the door to the treatment vault needed to be relocated so it could be operated outside of the donning and doffing area. Given the proximity of the documentation/operations alcove to the donning and doffing area, personnel were recommended to wear respirators, such as N95s, while stationed there regardless of whether they directly interacted with the COVID-positive or PUI patients. All negative air flow was managed via on-off switches for the HEPA filters, thereby allowing maximal flexibility in utilization and necessity for patient care. Early in the pandemic, patients were transferred to [XXX] for treatment when COVID positive to ensure the safety of other COVID negative patients.
In December 2021, in response to the Omicron variant surge, biocontainment construction was expanded to two of our higher-volume regional campuses to increase access to care without need for treatment relocation. This included construction projects at our [XXX]-based proton and photon facility at [XXX], as well as our [XXX] campus in [XXX], which focuses on thoracic oncology. Similarly to the main campus, HEIC assessed the air flow/air filtration systems to determine number of HEPA filters required to create negative pressure environments, and surveyed the clinics to recommend the modifications necessary to build suitable donning and doffing spaces. Representative construction schematics and photos of the HEPA filtration systems are shown in Supplementary Figures 2 and 3, respectively.

2. **Implementing a COVID-19 screening and testing protocol**

In May 2020, all sites of the radiation oncology department at [XXX] transitioned from a daily symptomatic screening algorithm to an asymptomatic test-based protocol for all patients scheduled for treatment in radiation oncology, in following with the institution’s approach to elective (i.e. non-emergent) outpatient procedures. Asymptomatic SARS-Cov-2 molecular testing was strongly recommended to take place for all patients within 7 days prior to starting treatment. Nursing staff maintained updated screening results for each patient, as some patients obtained tests outside of our hospital system. Documented COVID-19 testing result or note indicating that the patient declined screening was added as a line item on the new start checklist for radiation therapists. A minority (52) of the 5197 total new-start patients from 5/18/2020 to 9/7/2021 (when the universal asymptomatic screening policy was discontinued) declined testing per review of therapy documentation. On 1/3/2022, in response to the surge of the Omicron variant, an asymptomatic testing program was implemented for patients whose treatments require removal of face masks (i.e. patients whose immobilization involves aquaplast masks or breath-hold techniques). These patients were recommended to be tested prior to treatment and up to weekly while on-treatment at the discretion of the treating physician.
If a patient tested positive on either asymptomatic or symptomatic testing, the attending physicians considered delay until clearance of COVID-19 isolation precautions based on institutional policy. A re-testing strategy for clearance (recommended for severely immunocompromised patients) required either two consecutive negative tests or a single negative test at 28 days after documented positivity, while a non-re-testing strategy necessitated at minimum 10-14 days of quarantine after the positive test with improvement or resolution of symptoms. Alternatively, COVID-positive patients could be considered for treatment and/or simulation in our newly constructed biocontainment environments, per attending discretion with the guidance of a predefined priority scale and consideration of patient preference. Prior to the recent expansion of biocontainment resources at select regional campuses, if a COVID-positive patient was identified from a regional campus, the attending could elect to transfer the treatment plan to the main campus at [XXX] in [XXX]. Supplementary Figure 1 details the algorithm for our testing strategy and the management of COVID-positive patients after 1) implementation of universal asymptomatic testing prior to treatment and 2) biocontainment simulation/treatment capabilities were available at the main campus. Special consideration for utilization of biocontainment resources was also applied to patients designated as PUI (Person Under Investigation), particularly if this involved continued close household exposures.

Preparing clinical staff for the care of COVID-positive patients

To prepare nursing and therapy staff to care for COVID-positive patients, a training program was implemented that included several important safety components. Clinical staff caring for patients in our negative pressure rooms were provided video and in-person training on donning and doffing personal protective equipment (PPE). Several training drills were conducted with all team members anticipated to facilitate treatment of COVID-positive patients, in order to help them better understand the detailed steps required to keep both patients and staff safe. Completion of three drills per staff member was required for competency. This, in particular, involved establishing and practicing a safe pathway to
escort the patient from their transportation vehicle directly to the treatment room, and vice versa. Patients treated under the COVID-19 biocontainment protocol were scheduled for the last treatment slot of the day, allowing for proper terminal cleaning by Environmental Services and to minimize the risk of exposing other patients.

A clear delineation of roles for each individual on the COVID-19 protocol treatment team was emphasized. The Safety Officer did not have a direct patient care component and instead ensured that the COVID-positive patient could travel safely within the department, that negative pressure rooms were functioning as intended, and that PPE was properly donned and doffed. A two-member radiation therapist team was scheduled for each COVID-19 protocol treatment. The “Indirect Contact” Therapist remained in the control room to instruct and confirm setup shifts, while the “Direct Contact” Therapist actively interacted with the patient in the treatment vault for physical setup and manual shifts. Both the Safety Officer and the Direct Contact Therapist wore full PPE, while the Indirect Contact Therapist wore at minimum a respirator, such as an N95 mask. The specific responsibilities for each role are further detailed in Table 1. The preparation checklist shown in Figure 1 was reviewed by the three members of the treatment team in a huddle prior to each COVID-19 protocol treatment.

Results

The treatment of COVID positive patients evolved over the course of the pandemic. Figure 2 details the timeline of major events in our COVID-19 screening and biocontainment response. Construction of the biocontainment units was the first and most immediate need, in order to ensure the highest safety and infection control standards were met within radiation oncology. This was followed by implementing a screening protocol to ensure accurate identification of COVID positive patients in the pre-vaccination era, and later, to screen based on the increased risk of infection due to variant COVID strains even in those vaccinated. A total of 6525 patients were treated from June 2020 through January 2022 across 5 sites as part of an integrated radiation oncology network. During this time, while the majority of COVID
positive patients underwent treatment delays, 42 patients that met criteria by protocol [8] were simulated and/or treated under the COVID-19 biocontainment protocol. The median age of these patients was 61 years old (range: 3-83). Fifteen patients (35.7%) were transferred from a regional campus to the main campus for management due to COVID-19 positivity. This included two pediatric Wilm's tumor patients for whom it was felt treatment initiation could not be delayed. Importantly, 27 patients (64.3%) were treated with a curative intent, while 10 patients (23.8%) were treated as a result of an inpatient palliative consult. The majority of patients (61.9%) were initiated on the COVID-19 protocol after they were already mid-way into their intended treatment course, with 6 of these patients requiring hospital admission for their COVID-19 infections. Two patients were converted to COVID-19 protocol after becoming a PUI during their treatment courses due to continued close COVID-positive contacts in their household, although quarantine from these individuals was advised as much as feasible. While the most common indication for initiating the COVID-19 biocontainment protocol was to mitigate a long treatment break in patients who had already initiated their curative intent treatment course, there were also several palliative cases in order to address symptoms such as intractable pain (6 cases) and bleeding (3 cases). One case resulted from an urgent inpatient consult to consider RT for heterotopic ossification (HO) prophylaxis in an incidentally COVID-positive patient who required emergent surgery for a severe fracture sustained from a motor vehicle accident. Though prophylactic in nature, the tight window of efficacy for RT in HO prophylaxis precluded this patient from otherwise being able to delay treatment until clearance from COVID-19 precautions.

Discussion

At the outset of the pandemic, our clinical staff reviewed current and upcoming patients and designated them into three tiered priority levels, as previously detailed [8]. Level 1 patients were deemed the highest priority to continue therapy, including patients who had already started treatment courses, those with highly symptomatic metastatic disease, or those with rapidly progressing potentially
curable cancer. The policy indicated that patients who convert to COVID-positive or PUI status would need to be placed on a treatment break unless there was an urgent indication for treatment. Based on the institutional policy, that treatment break for COVID-19 patients would at minimum be 10-14 days or require 2 consecutive negative tests before clearance from precautions. This policy, though certainly necessary at the time, placed a burden on the treating physician to make difficult and ultimately subjective decisions about patient care and threatened the pillars of patient autonomy and mutual decision-making.

Importantly, total treatment time (TTT) can have a profound impact on oncologic outcomes. A National Cancer Database analysis of head and neck cancer patients receiving definitive chemoradiation (CRT) demonstrated that prolonged TTT (>56 days) was associated with worse overall survival (HR 1.29) [9]. In cervical cancer treated with CRT, TTT beyond 56 days was associated with a 17% increase in pelvic failure [10]. Similarly, time to treatment initiation (TTI) from diagnosis has also been associated with mortality rates. In head and neck cancer, TTI beyond 2 months was associated with a 13% increased risk of death [11]. Impacts of prolonged TTI on survival have also been demonstrated in disease sites considered to be more indolent on a relative scale, such as intermediate risk prostate cancer [12].

One obvious concern that the COVID-19 pandemic posed for the radiation oncology community was the potential for patient care to be compromised, whether it be due to COVID-19 infection necessitating a treatment break or a significant delay in treatment initiation. This problem is particularly salient when considering that the pandemic had already contributed to delayed diagnoses [13], [14], due to decreased cancer screening rates and outpatient workup accessibility. Moreover, in the palliative setting, the ability to use radiation therapy to manage symptoms such as intractable pain and bleeding can constitute the difference between a patient spending the remainder of their time alone in a hospital room (due to strict visitation rules) or being surrounded by loved ones in home hospice. The implementation of a COVID-19 biocontainment protocol helped to mitigate the impact of the pandemic
on patient care within our radiation oncology network, where well-defined safety protocols and filtration systems to eliminate contaminated air before returning to the departmental circulation helped provide comfort to staff members and patients alike.

We must now acknowledge that the COVID-19 pandemic is transitioning to becoming endemic. Like many others, our radiation oncology department was forced to rapidly enact safety measures that we had hoped at the time would only be temporary. However, it is now clear that the need for biopreparedness is anything but temporary. In June 2022 alone, there were 3.1 million cases of documented COVID-19 infection and over 10,100 COVID-related deaths in the United States. This number rivals the 12,469 total number of deaths attributed to the entirety of the 2009 H1N1 influenza pandemic in the U.S., according to the White House American Pandemic Preparedness report published in September 2021. There were several conclusions stated within this directive from a national perspective, including that there will be an increasing frequency of biological threats in the future and that current investment to mitigate “the toll of future pandemics… is an economic and moral imperative.” The need to treat COVID-19 positive radiation oncology patients remains an undeniable part of our foreseeable future. The latest strains of COVID-19 dominating the current surge are the most transmissible and immune-evasive yet [15], and with each wave comes the opportunity for selective pressures to produce new strains with unpredictable behavior and severity. In healthcare, if the COVID pandemic has taught us anything, it is that approaching these situations with a reactive rather than a proactive stance may not be the best practice. Our experience sets the highest possible standard for biocontainment utilization in radiation oncology. We anticipate that this report will assist other clinics in understanding and implementing biopreparedness for future infectious outbreaks, thereby addressing the needs of cancer patients in the safest possible manner.

Conflict of Interest Statement

YC, VF, RA, GB, ANS, VB, and JLW have no relevant conflicts of interest to disclose. SH reports being a voting member of working groups in the American Association of Physicists in Medicine. LRK reports research grants from Novartis, Incyte, BMS, and Novocure, and serving on a study steering committee for Novocure. ANV reports grants/contracts from NCI (R01) and Elsevier, Inc.
Funding
None

Data Availability Statement
The research data are not publicly available due to privacy or ethical restrictions.

Table 1: Responsibilities of each role in the COVID-19 protocol simulation and/or treatment of patients

Figure 1: Checklist to be completed with every COVID-19 protocol treatment
COVID-19 TREATMENT CHECKLIST

☐ Patient called previous day– review parking location, what to expect from staff, and symptoms
☐ Who’s on the team today? Date __________________________
 ☐ “Direct Contact Therapist” ____________________________
 ☐ “Indirect Contact Therapist” __________________________
☐ Who is the Safety Officer today? __________________________
☐ Safety Officer number __________________________
☐ Barcode printed out for patient
☐ Personal sharpie needed for patient setup
☐ Does the donning space have hand sanitizer and all of the PPE needed (Gowns, Gloves, Face Shield, N95)?
☐ Does the doffing space have hand sanitizer, trashcan, purple top wipes and place to set face shield to be cleaned?
☐ Signs posted in designated spaces of doffing/donning areas
☐ (Ascom) Phone # __________________________ (from nurses station for 2-way communication between Direct and Indirect Contact Therapists)
☐ Terminal clean number and sign out sheet posted and signed
☐ Email sent and called over to Environmental Services for terminal cleaning
☐ Empty treatment room of ALL items that can be removed or hidden behind cabinet doors, cover hand pendants with plastic bag (loosely)
☐ HEPA filter setting on HIGH/Doors Closed to Doffing Spaces
☐ Gown available for patient to change into
☐ Have ALL supplies out to be used for patient appointment (i.e., aquaplast, memory foam, lubricating jelly, linen bag etc.)
☐ Late Attending, Resident & Physicist notified
☐ Physician available and ready to review images if needed
☐ (Sim only) Unlock scanner room door
☐ (Sim only) Lock back simulation room entrance by the bathroom and hang sign (Sim only)
☐ Smoke Test Completed __________________________ (Follow Frequency Per Smoke Test Written Procedure)
☐ Review “Responsibilities” and “Think Ahead Items”

Figure 2: Timeline of key events
References

[8] [XXX]

