Diversity and Professional Advancement in Medical Physics

Jillian Rankin BS, Brendan Whelan PhD, Julianne Pollard-Larkin PhD, Kelly C. Paradis PhD, Matthew Scarpelli PhD, Chenbo Sun BS, Christina Mehta PhD, Keyvan Farahani PhD, Richard Castillo PhD

PII: S2452-1094(22)00163-4
DOI: https://doi.org/10.1016/j.adro.2022.101057
Reference: ADRO 101057

To appear in: Advances in Radiation Oncology

Received date: 29 March 2022
Accepted date: 10 August 2022

Please cite this article as: Jillian Rankin BS, Brendan Whelan PhD, Julianne Pollard-Larkin PhD, Kelly C. Paradis PhD, Matthew Scarpelli PhD, Chenbo Sun BS, Christina Mehta PhD, Keyvan Farahani PhD, Richard Castillo PhD, Diversity and Professional Advancement in Medical Physics, Advances in Radiation Oncology (2022), doi: https://doi.org/10.1016/j.adro.2022.101057

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Diversity in Medical Physics

Diversity and Professional Advancement in Medical Physics

Jillian Rankin, BS¹, Brendan Whelan, PhD², Julianne Pollard-Larkin, PhD³, Kelly C. Paradis, PhD⁴, Matthew Scarpelli, PhD⁵, Chenbo Sun, BS¹, Christina Mehta, PhD¹, Keyvan Farahani, PhD⁶, Richard Castillo, PhD¹

¹Emory University, ²University of Sydney, ³MD Anderson Cancer Center, ⁴University of Michigan, ⁵Purdue University, ⁶National Cancer Institute, National Institutes of Health

Corresponding Author:
Richard Castillo
richard.castillo@emory.edu
(404) 778-7339
1365 Clifton Road NE, Atlanta, GA 30322

Authors Responsible for Statistical Analysis:
Christina Mehta
christina.mehta@emory.edu
(404) 727-7623
100 Woodruff Circle, Atlanta, GA 30322

Chenbo Sun
chenbosun56@gmail.com
(470) 214-5233
1518 Clifton Road NE, Atlanta, GA 30322

Conflict of Interest Statement:
BW has received a grant from the Australian National Health and Medical Research Council, is a shareholder of 4D Medical, was granted patent #US11105874B2, and is an AAPM committee member. JPL is a board member of AAPM. MS is an employee of Purdue University and is provided therapeutic agents for research study from Imagion Biosystems. KCP has received grants from Michigan Medicine and University of Michigan, related to the current work. The remaining authors report no conflicts of interest.

Funding:
There was no funding for this study.

Data Sharing Statement:
Data underlying this study include AAPM membership records, AAPM committee rosters, AAPM awards rosters, AAPM member demographics data, AAPM Education and Research Fund Recipient records, the AAPM-NIH Research Database, and United States population demographics data. AAPM membership records, AAPM committee rosters, AAPM awards
Diversity in Medical Physics

rosters, and AAPM member demographics data were provided to the authors by AAPM; however, the authors do not own these data and are therefore unable to share them. AAPM Education and Research Fund Recipient records were made publicly available by AAPM and are available at: https://gaf.aapm.org/education/edfund.php. The AAPM-NIH Research Database is available to AAPM members upon request. United States population demographics data are publicly available at: https://data.census.gov/cedsci/.

Acknowledgements:
We would like to acknowledge Dimitri Zaras for guidance regarding statistical methods, Julius Dollison for guidance regarding AAPM Professional Survey data, and the gracious support of Winship Cancer Institute.

Abstract

Purpose: While disparities in the inclusion and advancement of women and minorities in science, technology, engineering, mathematics, and medical fields have been well-documented, less work has focused on medical physics specifically. In this study, we evaluate historical and current diversity within the medical physics workforce, in cohorts representative of professional advancement in the field, and within NIH-funded medical physics research activities.

Methods and Materials: The 2020 AAPM membership was queried as surrogate for the medical physics workforce. Select subsets of the AAPM membership were queried as surrogate for ‘professional advancement’ (PA) and ‘early-career professional advancement’ (ECPA) in medical physics. Self-reported AAPM-member demographics data representative of study analysis groups were identified and analyzed. Demographic characteristics of the 2020 AAPM membership were compared to those of the PA and ECPA cohorts and U.S. population. The AAPM-NIH Research Database
Diversity in Medical Physics

was appended with principal investigator (PI) demographics data and analyzed to evaluate trends in grant allocation by PI demographic characteristics.

Results: Women, Hispanic/Latinx/Spanish individuals, and individuals reporting a race other than ‘White’ or ‘Asian’ alone comprised 50.8%, 18.7%, and 32.4% of the U.S. population, respectively, but only 23.9%, 9.1%, and 7.9% of the 2020 AAPM membership, respectively. In general, representation of women and minorities was further decreased in the PA cohort; however, significantly higher proportions of women (p<0.001) and Hispanic/Latinx/Spanish members (p<0.05) were observed in the ECPA cohort than the 2020 AAPM membership. Analysis of historical data revealed modest increases in diversity within the AAPM membership since 2002. Across NIH grants awarded to AAPM members between 1985-2020, only 9.4%, 5.3%, and 1.7% were awarded to women, Hispanic/Latinx/Spanish, and non-White, non-Asian PIs, respectively.

Conclusions: Diversity within medical physics is limited. Proactive policy should be implemented to ensure diverse, equitable, and inclusive representation within research activities, roles representative of professional advancement, and the profession at large.
Introduction

Limited diversity in science, technology, engineering, mathematics, and medicine (STEMM) is a long-standing issue [1, 2]. Despite improvements in the inclusion of women and underrepresented minorities\(^1\) at the undergraduate level [3], disparities persist in higher educational attainment [3, 4] and in activities classically representative of professional advancement, including scientific authorship [5] and amongst award and grant recipients [6-8]. Within academia, diversity tends to be more limited at the faculty level than amongst students, a trend that is exacerbated with increasing academic rank [3, 4, 9]. Collectively, these findings reveal a progressive decline in the representation of women and minorities in roles associated with increased seniority, specialization, or qualification—a ‘leaky pipeline’ through which there is a disproportionate loss of diversity along academic and career trajectories [see, e.g., 10-12]. Rather than

\(^1\) In the context of STEMM higher education and workforce, ‘underrepresented minorities’ refers to individuals reporting Black or African American race, American Indian or Alaska Native race, or Hispanic or Latino ethnicity [3].
representing a lack of talent, ability, or motivation amongst those exiting the pipeline, ‘pipeline leaks’ have been attributed to a number of interrelated, systemic factors, including limited networking and mentorship opportunities, social isolation within the workplace, disproportionate service and administrative burdens, work-life integration challenges, implicit bias, and experiences of harassment and discrimination, amongst others [10-13]. Fortunately, improved understanding of these issues has led to development of ameliorating interventions and avenues for support within various fields [see, e.g., 11, 12, 14].

While work regarding diversity and professional advancement in medical physics is limited, existing scholarship suggests similar issues within the field. Recent analysis of the historical and current American Association of Physicists in Medicine (AAPM) membership revealed that women have remained underrepresented for over five decades, at maximum comprising 23.3% of AAPM members in 2019 [15]. Additionally, women were found to be underrepresented in a variety of clinical and AAPM leadership positions, including as CAMPEP program directors and AAPM council chairs, within AAPM executive committee roles, and as award recipients. Development and analysis of the AAPM-NIH Research Database has also revealed gender disparities in the allocation of research funding [16]. Amongst AAPM members, men are more than twice as likely to hold NIH funding than are women [16], and, relative to representation in the AAPM membership, a consistently lower proportion of women held NIH funding than did men for all years 2002-2019 [17]. Collectively, this literature reveals that women are not only underrepresented in medical physics in general, but they are even less likely to
hold roles or distinctions classically representative of professional advancement in the field.

Improvements in the recruitment, retention and career advancement of women and minority medical physicists would benefit the entire medical physics workforce, as a diverse and inclusive climate begets enhancements in innovation, productivity, and morale [18, 19]. Furthermore, increased workforce diversity may yield improvements in both public health and individual patient experiences. As medical providers, minority physicians disproportionately care for patients of medically underserved populations, including low income, minority, and Medicaid patients [20]. Additionally, racial concordance between patients and medical providers may be associated with increased patient satisfaction and cultural competence, longer encounters, and adherence to treatment plans [21-23]. Recent work has called attention to the particularly important role of a diverse oncology workforce in addressing racial disparities in cancer outcomes [24]. Given that, in 2019, 78% of PhD, board-certified medical physicists reported their role to be “Primarily Clinical” [25], efforts to increase diversity in medical physics stand to produce meaningful improvements in patient care and outcomes.

To our knowledge, there has not been a comprehensive, quantitative study of historical and current diversity in the medical physics workforce, leadership pools, and research activities that includes analysis of race and ethnicity in addition to gender, nor which evaluates diversity in roles associated with early-career professional advancement. In this study, we therefore seek to analyze gender, racial, and ethnic diversity within the medical physics workforce and in cohorts representative of professional advancement in the field, including those representative of early-career professional advancement.
Additionally, we use the AAPM-NIH Research Database [16] to examine trends in medical physics grant funding by principal investigator (PI) demographic characteristics. This work will provide meaningful context to support the development of actionable policy that ensures diversity and equitable opportunity for professional advancement within medical physics.

Methods

The 2020 AAPM membership was queried as surrogate for the current medical physics workforce, while select subsets of the AAPM membership representing career advancement and leadership were queried as surrogates for ‘professional advancement’ (PA) and ‘early-career professional advancement’ (ECPA) in the field. The PA cohort included CAMPEP program directors, NIH grant recipients, and AAPM committee members, committee chairs, and award recipients. The ECPA cohort was comprised of two subgroups, ‘early-career leadership’ and ‘early-career research leadership’. Inclusion criteria for study analysis groups and subgroups are summarized in Table 1. Active AAPM membership in 2020 was added to the inclusion criteria for subgroups without criteria that otherwise ensured recent involvement in medical physics-related professional activities. Awards associated with the ‘AAPM award recipients’ subgroup are available in Supplementary File A.

Historical membership, committee, and awards records provided by AAPM were used to identify AAPM members, committee members and chairs, and award recipients, respectively. NIH grant recipients, CAMPEP program directors, and AAPM Research Seed Grant recipients were identified through the AAPM-NIH Research Database [16],

the CAMPEP website [26], and publicly available AAPM Education and Research Fund Recipients data [27], respectively.

Voluntary, self-reported demographics data for current and former AAPM members were provided by AAPM. Demographics data were recoded for clarity and, for race data, consistency with U.S. Census data [28]. A detailed data recoding schema is available in Supplementary File B. U.S. population race and ethnicity demographics data were obtained from the 2020 U.S. Decennial Census [29, 30]. U.S. population sex demographics data were obtained from the 2019 American Community Survey [31].

AAPM-member demographics data representative of the 2020 AAPM membership, PA cohort, and ECPA cohort were identified through a series of data processing steps (Figure 1). Number and percentage of members by demographic characteristic were calculated for each study analysis group. ‘Not Reported or Unavailable’ demographics data were excluded from calculations of percentages. To evaluate historical trends in membership demographics, the process was repeated for all years of available AAPM membership data, 2002-2020.

The AAPM-NIH Research Database was appended with AAPM demographics data by merging datasets on PI AAPM-member identifier number. PI race and ethnicity were identified using appended AAPM demographics data, while PI gender identity was identified using a pre-existing ‘Gender’ data field from the AAPM-NIH Research Database. Number and percentage of grants awarded by PI demographic characteristic were calculated, once across all grant activity types and once for the subset of K- and F-grants only. For both calculations, grants awarded in all years represented in the dataset, 1985-2020, were pooled. Data were filtered to ensure that grants were counted
only once regardless of years of funding. To investigate historical trends, calculations were repeated with grants stratified by first year of funding. Grants with ‘Not Reported or Unavailable’ demographics data were excluded from calculations of percentages.

Data processing and analysis were performed using Python version 3.7.4 (Python Software Foundation, https://www.python.org/) and Microsoft Excel.

Statistical Analysis. Statistical analysis was performed using SAS version 9.4 (SAS Institute Inc). Demographic characteristics of the 2020 AAPM membership were compared to those of the PA cohort, ECPA cohort, and U.S. population. The one-sample test for proportions was used to determine whether differences in percentages of members reporting a given demographic identity were statistically significant at the p<0.05 level of significance. The exact one-sample test for proportions was used when one-sample test assumptions were not met. Statistical analysis was not performed in cases where one or both comparison group(s) contained no members reporting a given demographic identity.

Results

Demographic characteristics of the 2020 AAPM membership, PA cohort, ECPA cohort, and U.S. population are summarized in Table 2. Granular demographic characteristics of PA and ECPA cohort subgroups are available in Supplementary File C. Notably, AAPM-member demographics data was limited, with gender identity, race, and ethnicity reported by 90.2%, 38.6%, and 28.2%, respectively, of members represented in the dataset overall.
In general, diversity within medical physics study analysis groups was limited (Figure 2(a)), and women and minority groups were frequently underrepresented. Women were significantly underrepresented in the 2020 AAPM membership relative to the U.S. population (p<0.001) and comprised a minority (23.5%) of PA cohort members. Similarly, Hispanic/Latinx/Spanish members were underrepresented in the 2020 AAPM membership relative to the U.S. population (p<0.001) and comprised only 8.7% of PA cohort members. Interestingly, the ECPA cohort was more diverse by gender and ethnicity, comprised of significantly higher percentages of women (p<0.001) and Hispanic/Latinx/Spanish members (p<0.05) relative to the 2020 AAPM membership.

Racial diversity within all medical physics groups was highly limited. Despite comprising 32.4% of the U.S. population, racial groups other than ‘White’ or ‘Asian’ alone collectively comprised only 7.9%, 7.0%, and 6.1% of the 2020 AAPM membership, PA cohort, and ECPA cohort, respectively. Black/African American members were significantly underrepresented in the 2020 AAPM membership relative to the U.S. population, as were American Indian/Alaska Native members and members reporting ‘Some Other Race’ or ‘Two or More Races’. While Asian members were overrepresented in the 2020 AAPM membership relative to the U.S. population (p<0.001), they were underrepresented in the PA cohort relative to the 2020 AAPM membership (p<0.01); however, there was no significant difference between the proportion of Asian members in the ECPA cohort and the 2020 AAPM membership.

Two-sided P-values for all statistical tests are available in Supplementary File D.

The proportions of women, Hispanic/Latinx/Spanish, and Asian members in the AAPM membership generally increased between 2002 and 2020, while proportions of men,
Diversity in Medical Physics

non-Hispanic/Latinx/Spanish, and White members decreased accordingly (Figure 2(b)). Individually, racial groups other than ‘White’ or ‘Asian’ have consistently comprised very low (< 3%) percentages of the AAPM membership.

Of NIH grants listed in the AAPM-NIH Research Database, 97.9%, 27.8%, and 22.7% were matched to PI gender identity, race, and ethnicity, respectively (Table 3). By percentage of grants, funding has primarily been awarded to men (90.6%), White and Asian PIs (98.3%), and non-Hispanic/Latinx/Spanish PIs (94.7%). Notably, no grants have been awarded to American Indian/Alaska Native PIs. By gender, the distribution of K- and F-grants appears more equitable than the distribution of grants overall (28.6% vs. 9.4% of grants awarded to women, respectively); however, interpretation is limited by low sample size.

The percentage of NIH grants awarded to women generally increased between 1985-2020, but, as of 2020, remained disproportionately low relative to the proportion of women within AAPM (Figure 3). By race, notable trends in the allocation of funding included an increase in the percentage of grants awarded to Asian PIs mirrored by a decrease in the percentage awarded to White PIs. Percentages of grants awarded to PIs identifying as Black/African American, Native Hawaiian/Pacific Islander, ‘Some Other Race’, ‘Two or More Races’, or Hispanic/Latinx/Spanish have generally remained low (<10%) and disproportionate relative to representation within the AAPM membership.

Discussion
This study revealed important insights regarding diversity and equity in medical physics. Limited diversity in the 2020 AAPM membership relative to the U.S. population suggests a costly disproportionality in recruitment of individuals to the profession. Additionally, limited diversity in the PA cohort and within grant-funded research activities may be indicative of bias, discrimination and/or exclusion in the advancement to leadership positions. Notably, underrepresentation of Asian members in the PA cohort relative to AAPM demonstrates, in the case where sufficient data exists, that barriers to professional advancement may exist even for minority groups with relatively high representation in the workforce. In comparisons to related fields, representation of women and minorities\(^2\) in AAPM was similar to that observed in physical science fields and science and engineering fields overall [32], was generally in line with physician workforce demographics [4] and was very similar to radiation oncology workforce demographics [33].

Prior work has linked a number of factors to the exclusion of women and minorities from leadership roles and participation in research activities in STEMM [9-13, 34, 35]. While work specific to medical physics has been limited, existing literature, focused primarily on gender, offers important insight. A study of work-life integration amongst medical physicists revealed that, more so than men, women report that their academic productivity and ability to “keep up” in their career advancement are limited by childcare needs and other domestic responsibilities [36]. Indeed, recent analysis of research productivity amongst radiation therapy physicists revealed gendered differences in h-
index, number of publications and representation as senior faculty [37]. Such reports may also explain the existence of large, persistent disparities in NIH grant funding by gender despite similar award success rates amongst men and women [7, 16, 17]. Beyond research, inequitable leadership promotion practices, including selection processes reliant on networking with male colleagues and a lack of transparency regarding opportunity for promotion, may also contribute to limited representation of women within leadership roles [15, 38]. Further study of these issues is needed, especially in the context of other excluded groups in addition to gender (e.g., racial/ethnic minoritized populations, sexual and gender minorities, disabled populations, and others), which have been investigated to a lesser extent in existing literature. Additionally, future analysis of ‘professional advancement’ subgroup demographics may reveal potential areas for targeted intervention, as limited diversity within certain leadership cohorts may be indicative of unique barriers to professional advancement.

It is unclear whether increased diversity in the ECPA cohort and K- and F-grant funding pools\(^3\) represents a broader trend towards improved workforce diversity or early, yet-unaffected stages of a ‘leaky pipeline’. In the context of prior work implicating the early-career and post-doctoral stages as particularly critical breakpoints for career attrition and trajectory [10, 39, 40], our findings may be suggestive of critical losses in medical physics workforce diversity at graduate-to-early-career and/or early- to mid-career transitions. Additional work is required to further evaluate demographic trends in the

\(^3\) Although data for T-grant sub-award recipients would similarly inform this area of analysis, information pertaining to T-grant institutional sub-awards was not available.
medical physics pipeline and assess the extent to which such trends explain disparities in leadership and research representation. In any case, given an increasingly diverse pool of STEM bachelor's degree holders [3], efforts to recruit and support a diverse body of early-career medical physicists will be paramount in ensuring future improvements in diversity. Interventions may include improvement of mentorship and networking opportunities, fostering a sense of belonging and identity, provision of social, financial, faculty, departmental and institutional support, bias training, and the development of interinstitutional relationships between primarily majority- and minority-serving institutions [11-14, 41-44].

The role of current leadership in achieving these ends cannot be overstated. While a lack of representation in leadership reinforces experiences of marginalization and devaluation that contribute to career attrition, the converse improves access to key resources for overcoming barriers to professional advancement [45-47]. However, given limited diversity in existing medical physics leadership roles, women and minority medical physicists may not have access to leaders and/or mentors with similar backgrounds and experiences. Despite this limitation, underrepresented medical physicists may benefit from support systems including individuals not exclusively from their own demographic group [48]. Although non-White, non-Asian racial groups individually comprise low percentages of the AAPM membership, they collectively comprise nearly the same share as do Hispanic/Latinx/Spanish members (Figure 2(b)). Given that improvements in inclusion and leadership promotion may be fueled by the development of a "critical mass" of non-majority group members [49], as may be the case for women and Hispanic/Latinx/Spanish medical physicists, support networks
promoting connections across demographic lines may be beneficial for members of other underrepresented groups. In the context of research, funded women and Asian investigators may be a source of support as they are similarly non-majority but have received funding to a relatively broad extent. In any case, allocation of resources to the development of avenues of support will be critical in improving the retention and advancement of talented minority medical physicists, in turn driving improvements in workforce and leadership diversity.

Limitations and Future Directions. There are several limitations of this study. Low reporting rates of AAPM-member demographic characteristics, especially race and ethnicity, preclude a complete understanding of workforce diversity, limit evaluation of associations between demographic factors and professional advancement, and restrict statistical analysis. While improved demographics data is critical to our understanding and may improve data interpretation, there are well-established concerns with self-reporting of such metrics by underrepresented and often vulnerable individuals [50, 51]. Efforts to increase diversity within AAPM will help yield more meaningful results.

AAPM is not necessarily representative of the entire medical physics workforce, as there are many specialty fields that are not prominently represented in the activities of the AAPM membership but which can be considered subfields of medical physics [17]. The generalizability of this work is dependent on whether or how the demographic characteristics of these fields differ from those that are more predominant in AAPM. Future work may pursue a broader definition of “the medical physics workforce” by including investigation of non-AAPM medical physicists, although limited availability of quality demographics data may hinder this approach.
The data presented in this report does not speak to the unique experiences of the individuals it represents, nor does it directly address climate. In 2021, AAPM conducted its first climate survey of its membership, focused on equity, diversity, and inclusion within medical physics [52]. The findings of this survey provide important insight into personal experiences of individuals and groups within the specialty.

Conclusion

Women and most racial and ethnic minority groups are underrepresented in the medical physics workforce and in roles and activities classically representative of professional advancement in the field. Given an increasingly diverse pool of STEM graduates, actionable policy and targeted efforts at recruitment and retention should be developed and implemented to ensure future improvements in workforce diversity and inclusivity, as well as equitable opportunity for professional advancement and leadership promotion. Given limited coverage in the existing literature, future work should pursue understanding of the unique experiences of minority medical physicists.
Declaration of interests

☐ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☒ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Brendan Whelan reports a relationship with Australian National Health and Medical Research Council that includes: funding grants. Juliane Pollard-Larkin reports a relationship with American Association of Physicists in Medicine that includes: board membership. Matthew Scarpelli reports a relationship with Purdue University that includes: employment. Matthew Scarpelli reports a relationship with Imagion Biosystems Ltd that includes: non-financial support. Kelly Paradis reports a relationship with Michigan Medicine that includes: funding grants. Kelly Paradis reports a relationship with University of Michigan that includes: funding grants. Brendan Whelan reports a relationship with 4D Medical that includes: equity or stocks. Brendan Whelan has patent #US11105874B2 issued to Siemens Healthcare GmbH.
AAPM committee member - Brendan Whelan

References

20. Marrast LM, Zallman L, Woolhandler S, Bor DH, McCormick D. Minority physicians’ role in the care of underserved patients: Diversifying the physician

52. Hendrickson KRG, Avery SM, Castillo R, et al. 2021 AAPM Equity, Diversity, and Inclusion Climate Survey Executive Summary [published online ahead of
Figure Captions

Figure 1. Process used to identify demographics data representative of study analysis groups. Demographics data representative of study analysis groups were identified by filtering AAPM-member demographics data with lists of AAPM-member identifier numbers representative of each study analysis group. ‘PA’ = ‘Professional Advancement’. ‘ECPA’ = ‘Early-Career Professional Advancement’.

*Self-reported AAPM-member demographics data was not available for all members.
Figure 2. Diversity in the current and historical medical physics workforce. (a) Representation of various demographic groups in the 2020 AAPM membership were calculated and compared to those in the U.S. population, 'professional advancement' cohort, and 'early-career professional advancement' cohort. Stars denote a statistically significant difference between the percentage of the 2020 AAPM membership reporting a given demographic characteristic and the percentage of individuals in the respective comparison group reporting the same characteristic. * = p<0.05, ** = p<0.01, *** = p<0.001. ‘AI/AN’ = ‘American Indian or Alaska Native. ‘NH/PI’ = ‘Native Hawaiian or Pacific Islander’. (b) Historical trends in AAPM membership demographics. Percentages of members reporting various demographic characteristics were calculated for each year in available membership records, 2002-2020.
Figure 3. Trends in the Allocation of NIH Grants to AAPM Members by Principal Investigator Demographic Characteristics. Grants listed in the AAPM-NIH Research Database were stratified by first year of funding. Percentages of grants awarded by principal investigator demographic characteristic were calculated for each time period (blue bars). Percentages of the 2020 AAPM membership by demographic group are provided for context (striped, orange bars). ‘NH/PI’ = ‘Native Hawaiian or Pacific Islander’.
Table 1. Inclusion Criteria for Study Analysis Groups and Subgroups.

<table>
<thead>
<tr>
<th>Study Analysis Group</th>
<th>Subgroup</th>
<th>Inclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020 AAPM Membership</td>
<td></td>
<td>• Active member of AAPM in 2020</td>
</tr>
<tr>
<td></td>
<td>CAMPEP Program Directors</td>
<td>• Director of CAMPEP-accredited medical physics residency, graduate, certificate, or professional doctorate program as of 2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Current or former member of AAPM</td>
</tr>
<tr>
<td></td>
<td>NIH Grant Recipients</td>
<td>• Principal investigator awarded NIH grant between 1985-2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Active member of AAPM in 2020</td>
</tr>
<tr>
<td>‘Professional Advancement’ Cohort</td>
<td>AAPM Award Recipients</td>
<td>• Ever recipient of AAPM award</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Active member of AAPM in 2020</td>
</tr>
<tr>
<td></td>
<td>AAPM Committee Members</td>
<td>• Ever AAPM committee member</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Active member of AAPM in 2020</td>
</tr>
<tr>
<td></td>
<td>AAPM Committee Chairs</td>
<td>• Ever AAPM committee chair or vice chair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Active member of AAPM in 2020</td>
</tr>
</tbody>
</table>
Diversity in Medical Physics

<table>
<thead>
<tr>
<th>‘Early-Career Professional Advancement’ Cohort</th>
<th>Early-Career Leadership</th>
<th>Early-Career Research Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Member of any ‘Professional Advancement’ cohort subgroup</td>
<td>• Received NIH K- or F-grant funding, an AAPM Research Seed Grant, or an AAPM early career or junior investigator award between 2016-2020</td>
</tr>
<tr>
<td></td>
<td>• Age less than 40 as of 1/1/2020</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Demographic Characteristics of the U.S. Population, 2020 AAPM Membership, and Medical Physics ‘Professional Advancement’ and ‘Early-Career Professional Advancement’ Cohorts.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender Identity, N (%*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>161,588,973 (49.2)</td>
<td>6844 (76.1)</td>
<td>2189 (76.4)</td>
<td>430 (61.7)</td>
</tr>
<tr>
<td>Woman</td>
<td>166,650,550 (50.8)</td>
<td>2149 (23.9)</td>
<td>674 (23.5)</td>
<td>266 (38.2)</td>
</tr>
<tr>
<td>Gender Identity Minority</td>
<td>3 (<0.1)</td>
<td>1 (<0.1)</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Not Reported or Unavailable</td>
<td>454</td>
<td>30</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Race, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White alone</td>
<td>204,277,273 (61.6)</td>
<td>2611 (64.6)</td>
<td>935 (69.3)</td>
<td>268 (68.5)</td>
</tr>
<tr>
<td>Asian alone</td>
<td>19,886,049 (6.0)</td>
<td>1112 (27.5)</td>
<td>321 (23.8)</td>
<td>99 (25.3)</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>41,104,200 (12.4)</td>
<td>107 (2.6)</td>
<td>29 (2.1)</td>
<td>7 (1.8)</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander alone</td>
<td>689,966 (0.2)</td>
<td>6 (0.1)</td>
<td>3 (0.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>American Indian or Alaska Native alone</td>
<td>3,727,135 (1.1)</td>
<td>7 (0.2)</td>
<td>2 (0.1)</td>
<td>2 (0.5)</td>
</tr>
<tr>
<td>Some Other Race alone</td>
<td>27,915,715 (8.4)</td>
<td>89 (2.2)</td>
<td>26 (1.9)</td>
<td>5 (1.3)</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>33,848,943 (10.2)</td>
<td>110 (2.7)</td>
<td>34 (2.5)</td>
<td>10 (2.6)</td>
</tr>
<tr>
<td>Not Reported or Unavailable</td>
<td>5408</td>
<td>1544</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>Ethnicity, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, Latinx, or Spanish</td>
<td>62,080,044 (18.7)</td>
<td>289 (9.1)</td>
<td>90 (8.7)</td>
<td>41 (12.2)</td>
</tr>
<tr>
<td>Not Hispanic, Latinx, or Spanish</td>
<td>269,369,237 (81.3)</td>
<td>2875 (90.9)</td>
<td>944 (91.3)</td>
<td>294 (87.8)</td>
</tr>
<tr>
<td>Not Reported or Unavailable</td>
<td>6286</td>
<td>1860</td>
<td>368</td>
<td></td>
</tr>
</tbody>
</table>

*Counts for ‘Not Reported or Unavailable’ groups were excluded from calculation of percentages.
†U.S. population data by race and ethnicity obtained from the 2020 U.S. Decennial Census [28, 29]. U.S. population data by sex obtained from the 2019 American Community Survey [30].

Table 3. NIH Grants Awarded to AAPM Members by Grant Activity Type and Principal Investigator Demographic Characteristics, 1985-2020 Pooled.

<table>
<thead>
<tr>
<th>Gender Identity, N (%)</th>
<th>Total Grants: Any Activity Type</th>
<th>Total Grants: K- and F-Grants Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1537 (90.6)</td>
<td>35 (71.4)</td>
</tr>
<tr>
<td>Woman</td>
<td>159 (9.4)</td>
<td>14 (28.6)</td>
</tr>
</tbody>
</table>

30
Diversity in Medical Physics

<table>
<thead>
<tr>
<th>Gender Identity Minority</th>
<th>0 (0.0)</th>
<th>0 (0.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Reported or Unavailable</td>
<td>36</td>
<td>1</td>
</tr>
</tbody>
</table>

Race, N (%*)

<table>
<thead>
<tr>
<th>Race, Alone</th>
<th>N (%)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White alone</td>
<td>300 (62.2)</td>
<td>13 (76.5)</td>
</tr>
<tr>
<td>Asian alone</td>
<td>174 (36.1)</td>
<td>3 (17.6)</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>1 (0.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander alone</td>
<td>1 (0.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>American Indian or Alaska Native alone</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Some Other Race alone</td>
<td>2 (0.4)</td>
<td>1 (5.9)</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>4 (0.8)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Not Reported or Unavailable</td>
<td>1250</td>
<td>33</td>
</tr>
</tbody>
</table>

Ethnicity, N (%*)

<table>
<thead>
<tr>
<th>Ethnicity, Alone</th>
<th>N (%)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic, Latinx, or Spanish</td>
<td>21 (5.3)</td>
<td>6 (37.5)</td>
</tr>
<tr>
<td>Not Hispanic, Latinx, or Spanish</td>
<td>373 (84.7)</td>
<td>10 (62.5)</td>
</tr>
<tr>
<td>Not Reported or Unavailable</td>
<td>1338</td>
<td>34</td>
</tr>
</tbody>
</table>

Counts for 'Not Reported or Unavailable' groups were excluded from calculation of percentages.