ABSTRACT
Purpose
Methods
Results
Conclusions
Keywords
INTRODUCTION
Materials and Methods
Ethics statement
Radiation treatment planning
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Couch angle (Varian convention) | 260° | 245° | 230° | 215° | 200° | 160° | 145° | 130° | 115° | 100° | |
Couch angle (IEC convention) | 280° | 295° | 310° | 325° | 340° | 20° | 35° | 50° | 65° | 80° | |
Gantry angle (Varian convention) | Start | 150° | 30° | 150° | 30° | 150° | 210° | 330° | 210° | 330° | 210° |
End | 30° | 150° | 30° | 150° | 30° | 330° | 210° | 330° | 210° | 330° | |
Gantry angle (IEC convention) | Start | 30° | 150° | 30° | 150° | 30° | 330° | 210° | 330° | 210° | 330° |
End | 150° | 30° | 150° | 30° | 150° | 210° | 330° | 210° | 330° | 210° |
Radiation plan delivery
Monitoring and confirmation of lesion progression
Results
Dosimetry


Imaging lesion volume and accuracy


Histological confirmation of necrosis

Toxicity effects from treatment
Discussion
CONCLUSIONS
References
- 1Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015;53:574–580.
- 2Li Y-Q, Chen P, Haimovitz-Friedman A, et al. Endothelial Apoptosis Initiates Acute Blood–Brain Barrier Disruption after Ionizing Radiation. Cancer Res. 2003;63:5950 LP – 5956.
- 3Coderre JA, Morris GM, Micca PL, et al. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat. Res. 2006;166:495–503.
- 4Tuleasca C, Régis J, Sahgal A, et al. Stereotactic radiosurgery for trigeminal neuralgia: a systematic review. J. Neurosurg. 2018;130:733–757.
- 5Dallapiazza RF, Lee DJ, De Vloo P, et al. Outcomes from stereotactic surgery for essential tremor. J. Neurol. Neurosurg. Psychiatry. 2019;90:474–482.
- 6Martínez-Moreno NE, Sahgal A, De Salles A, et al. Stereotactic radiosurgery for tremor: systematic review. J. Neurosurg. 2018;130:589–600.
- 7Pérez-Sánchez JR, Martínez-Álvarez R, Martínez Moreno NE, et al. Gamma Knife® stereotactic radiosurgery as a treatment for essential and parkinsonian tremor: long-term experience. Neurologia. 2020.
- 8Luo G, Cameron BD, Wang L, et al. Targeting for stereotactic radiosurgical thalamotomy based on tremor treatment response. J. Neurosurg. 2021:1–8.
- 9Kondziolka D, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for epilepsy and functional disorders. Neurosurg. Clin. N. Am. 2013;24:623–632.
- 10Martínez-Álvarez R. Radiosurgery for Behavioral Disorders. Prog. Neurol. Surg. 2019;34:289–297.
- 11Barani IJ, Larson DA. Radiation therapy of glioblastoma. Cancer Treat. Res. 2015;163:49–73.
- 12Soliman H, Das S, Larson DA, et al. Stereotactic radiosurgery (SRS) in the modern management of patients with brain metastases. Oncotarget. 2016;7:12318–12330.
- 13Thiagarajan A, Yamada Y. Radiobiology and radiotherapy of brain metastases. Clin. Exp. Metastasis. 2017;34:411–419.
- 14Fink J, Born D, Chamberlain MC. Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr. Neurol. Neurosci. Rep. 2012;12:276–285.
- 15Miyatake S, Nonoguchi N, Furuse M, et al. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol. Med. Chir. (Tokyo). 2015;55:50–59.
- 16Doré M, Martin S, Delpon G, et al. Stereotactic radiotherapy following surgery for brain metastasis: Predictive factors for local control and radionecrosis. Cancer Radiother. 2017;21:4–9.
- 17Kohutek ZA, Yamada Y, Chan TA, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J. Neurooncol. 2015;125:149–156.
- 18Minniti G, Scaringi C, Paolini S, et al. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:1142–1148.
- 19Park HS, Wang EH, Rutter CE, et al. Changing practice patterns of Gamma Knife versus linear accelerator-based stereotactic radiosurgery for brain metastases in the US. J. Neurosurg. 2016;124:1018–1024.
- 20Khattab MH, Cmelak AJ, Sherry AD, et al. Noninvasive Thalamotomy for Refractory Tremor by Frameless Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2021.
- 21Luo G, Neimat JS, Cmelak A, et al. Margin of error for a frameless image guided radiosurgery system: Direct confirmation based on posttreatment MRI scans. Pract. Radiat. Oncol. 2017;7:e223–e231.
- 22Jiang X, Yuan L, Engelbach JA, et al. A gamma-knife-enabled mouse model of cerebral single-hemisphere delayed radiation necrosis. PLoS One. 2015;10.
- 23Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis. Sci. Reports 2017 71. 2017;7:1–7.
- 24Kiehl EL, Stojadinovic S, Malinowski KT, et al. Feasibility of small animal cranial irradiation with the microRT system. Med. Phys. 2008;35:4735.
- 25Wong J, Armour E, Kazanzides P, et al. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities. Int. J. Radiat. Oncol. Biol. Phys. 2008;71:1591.
- 26Kondziolka D, Lunsford LD, Claassen D, et al. Radiobiology of RadiosurgeryPart I. The Normal Rat Brain Model. Neurosurgery. 1992;31:271–279.
- 27Mori Y, Kondziolka D, Balzer J, et al. Effects of Stereotactic Radiosurgery on an Animal Model of Hippocampal Epilepsy. Neurosurgery. 2000;46:157–168.
- 28Jiang X, Engelbach JA, Yuan L, et al. Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain. 2014;20:2695–2702.
- 29Jiang X, Perez-Torres CJ, Thotala D, et al. A GSK-3β inhibitor protects against radiation necrosis in mouse brain. Int. J. Radiat. Oncol. Biol. Phys. 2014;89:714–721.
- 30Hartl BA, Ma HSW, Hansen KS, et al. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model. Int. J. Radiat. Biol. 2017;93:676–682.
- 31Kumar S, Arbab AS, Jain R, et al. Development of a novel animal model to differentiate radiation necrosis from tumor recurrence. J. Neuro-Oncology 2012 1083. 2012;108:411–420.
- 32Mainwaring W, Bowers J, Pham N, et al. Stereotactic Radiosurgery Versus Whole Brain Radiation Therapy: A Propensity Score Analysis and Predictors of Care for Patients With Brain Metastases From Breast Cancer. Clin. Breast Cancer. 2019;19:e343–e351.
- 33Yang L, Yang J, Li G, et al. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol. Neurobiol. 2015 542. 2016;54:1022–1032.
- 34Sharma S, Narayanasamy G, Przybyla B, et al. Advanced Small Animal Conformal Radiation Therapy Device. Technol. Cancer Res. Treat. 2017;16:45–56.
- 35Verhaegen F, Dubois L, Gianolini S, et al. ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. Radiother. Oncol. 2018;126:471–478.
- 36Liu H, Andrews DW, Evans JJ, et al. Plan Quality and Treatment Efficiency for Radiosurgery to Multiple Brain Metastases: Non-Coplanar RapidArc vs. Gamma Knife. Front. Oncol. 2016;0:26.
- 37Kim H, Fabien J, Zheng Y, et al. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner. Med. Phys. 2014;41:021715.
- 38Sinha TK, Khatib-Shahidi S, Yankeelov TE, et al. Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat. Methods. 2008;5:57.
Appendix. Supplementary materials
Article Info
Publication History
Publication stage
In Press Journal Pre-ProofFootnotes
Financial Disclosure/Conflicts of Interest. The authors have no financial disclosure or conflicts of interest related to this manuscript.
Funding. This study was supported by NIH grants K12CA090625, R01CA109106, and the Vanderbilt Radiology/VUIIS Catalyst Award Program. The imaging was supported by grant S10OD019993 for the Advance III HD Console of a 7T Small Animal MRI/MRS System housed in the Vanderbilt Center for Small Animal Imaging. The Translational Pathology Shared Resource is supported by NCI/NIH Cancer Center Support Grant P30CA068485 and the Vanderbilt Mouse Metabolic Phenotyping Center Grant U24DK059637.
Authors’ Contributions: Conception and Design: J. Xu, A.N. Kirschner
Development of Methodology: S.P. Devan, G. Luo, X. Jiang, J. Xie, D. Dean, L. Johnson, M. Morales-Paliza, J. Xu, A.N. Kirschner
Acquisition of Data: S.P. Devan, G. Luo, X. Jiang, J. Xie, H. Harmsen
Analysis and interpretation of data: S.P. Devan, G. Luo, X. Jiang, J. Xie, H. Harmsen, J. Xu, A.N. Kirschner
Writing, review, and/or revision of the manuscript: S.P. Devan, G. Luo, J. Xu, A.N. Kirschner
Administrative, technical, or material support: S.P. Devan, G. Luo, X. Jiang, J. Xie, D. Dean, L. Johnson, M. Morales-Paliza, H. Harmsen, J. Xu, A.N. Kirschner
Study supervision: J. Xu, A.N. Kirschner
Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy