Abstract
Purpose/Objective
Materials/Methods
Results
Conclusion
Introduction
Materials/Methods
Consensus Recommendation
Results
Data was analyzed from 4,664 patients from 5 LAMBDA institutions. Average age of patients
Variability of OAR Nomenclature and Contour Inclusion

Variability of OAR Volumes

Variability of OAR DVH Metrics and Constraints
OAR Structure | DVH Metric | Planning Constraints(Institution, Priority) | “Real World”Treated ValuesMedian [Q1,Q3] | Compare to Literature Guideline Values(with p – values for guideline value different from “real world” treated values) |
---|---|---|---|---|
SpinalCord | D0.03cc[Gy] | < 45Gy (D,1) Max[Gy] < 50Gy (C,1) < 45Gy (B),(E,1) D0.1cc[Gy] < 45Gy (A,1),(B) | 39Gy [36,41] | < 45Gy NRG:1008, 0912, Lee [45,51] (0.006[< 0.001,0.02]) < 48Gy,NRG:0920, HN003 [49,50] (0.001[<0.001,0.002]) < 50Gy NRG:HN004,1016,1008,3504, BN001, BN005 [42,44-48] (<0.001[<0.001, <0.001]) |
SpinalCord_PRV | D0.03cc[Gy] | < 50Gy (C,1), (D,1) Max[Gy] < 50Gy (B) < 45Gy (E) D0.1cc[Gy] < 52Gy (C,1) < 50Gy (A,1) | 46Gy [42,48] | < 45 Gy: Lee [41] (0.42 [0.06, 0.06]) |
Brainstem | D0.03cc[Gy] | ≤ 54 (D,1) Max[Gy] ≤ 54 (B), (C,1) D0.1cc[Gy] ≤ 54 (A,1), (B) | 37Gy [28,42] | < 50Gy,NRG:HN003 [50] (0.005 [< 0.001, < 0.02]) < 54Gy,NRG:HN004, BN003, Lee [42,52,41] (0.002 [< 0.001, < 0.006]) < 55Gy,NRG: BN001, BN005 [47,48] (0.001 [< 0.001, < 0.005]) |
V30Gy[%] | < 30% (E,3) | 7.7%[0.6,18] | ||
Brainstem_PRV | D0.03cc[Gy] | Max[Gy] ≤ 60Gy (B) D0.1cc[Gy] ≤ 54Gy (A,1), (B) | 52Gy[46,56] | <54Gy: Lee[41] (0.43[0.02, 0.43]) |
Parotid_High | Mean[Gy] | < 26Gy (B,), (C,3), (D,3), (E,3) < 24Gy (A,3) | 30Gy [25,40] | < 26Gy both parotids, Lee [41] (0.009 [0.14,0.02]) |
Parotid_Low | Mean[Gy] | < 26Gy (B), (C,3), (D,3), (E,3) < 24 (A,3) | 23Gy [16,25] | < 20Gy; <20% long term loss of function, QUANTEC-Deasy [15] (0.03 [0.20,0.004]) < 26Gy both parotids, Lee [41] (0.03 [0.02,0.09]) |
V15Gy[%] | < 50% (E,3) | 56% [35,68] | ||
V15Gy[cc] | 15cc [7.8,21] | |||
Bone_Mandible | D0.03cc[Gy] | Max[Gy] < 70Gy (E,3) < 66Gy (C,3) D0.1cc[Gy] < 70Gy (A,3) | 70Gy [64,73] | < 66Gy NRG:HN003[50] (0.01[0.09,<0.001]) < 70Gy,NRG:HN004,3504[42,46] (1.0 [0.003,0.002]) |
V40Gy[%] | < 40Gy (E,3) | 42% [26,61] | ||
Esophagus | Mean[Gy] | < 45Gy (B) < 30Gy (C,3), (E,3) < 20Gy (A,1) | 21Gy [15,28] | < 30Gy,NRG:HN004,3504 [42,46] (0.02 [0.008, 0.61]) < 34Gy; 5-20% acute grade >= 3 Esophagitis, QUANTEC-Werner-Waskik[18] (0.006 [0.003,0.17]) < 35Gy, NRG: HN003 [50] (0.004 [0.002, 0.12]) < 45Gy, larynx cancer NRG: HN003 [50] (0.006 [< 0.001, 0.009]) |
V35Gy[%] | 24% [9.4,41] | < 50%; > 30% acute grade≥2 Esophagitis, QUANTEC-Werner-Waskik[18] (0.21 [<0.001, 0.41]) | ||
V35Gy[cc] | 3.1cc [1.3,5.3] | |||
Larynx | V50Gy[%] | < 50% (C,3) | 14% [5.3,33] | Median[Gy] < 50Gy risks aspiration, Feng [30] (0.016 [0.002, 0.14]) Median[Gy] < 55Gy risks dysphagia, Akagunduz [28] (0.007 [0.001, 0.05]) |
V50Gy[cc] | 4.5Gy [1.7,11] | |||
Mean[Gy] | < 45Gy (B) < 43.5Gy (C,3) < 30Gy (E,3) < 20Gy (A,1) | 33Gy [27,41] | < 20Gy, NRG:HN004, 3504 [42,46] (0.04 [0.1, 0.01]) < 35Gy;glottic, NRG:HN003,Lee [50,41] (0.66 [0.07, 0.29]) < 50Gy risks 30% Aspiration, Mortensen[23] (0.016 [0.002, 0.14]) < 60Gy, NRG:0912 [49] (0.003 [<0.001, 0.02]) | |
Cavity_Oral | Mean[Gy] | < 30Gy (A,3),(B), (C,3)(E,3) | 31Gy [24,40] | < 30Gy, NRG: HN003, HN004,3504 [50,42,46] (0.46 [0.01, 0.002]) < 35Gy, NRG:0912 [49] (0.03 [0.001, 0.03]) <40Gy, Lee[41] (0.03 [0.003,0.5]) |
V30Gy[%] | 48% [27,71] | ≤ 71.8% grade ≥3 acute toxicity, Li [21] (0.002[<0.001,0.95] | ||
V50Gy[%] | 11% [1.7,28] | ≤ 14.3% grade ≥3 acute toxicity, Li [21] (0.18 [<0.001,0.03]) | ||
Glnd_Submand_High | Mean[Gy] | < 40Gy (C,3) < 39Gy (E,3) < 30Gy (A,3) | 66Gy [56,69] | |
Glnd_Submand_Low | Mean[Gy] | < 30Gy (A,3), (D,3) < 26Gy (E,3) | 48Gy [34,59] | < 35Gy, Lee[41] (0.07 [0.79, 0.002]) < 39Gy stimulated salivary flow rates recover, Murdoch-Kinch [34] (0.17 [0.23, 0.005]) |
Eye_(R or L) | Mean[Gy] | 3Gy [1.5,5.6] R 2.9Gy [1.5,5.2] L | < 35Gy, Lee [41] (<0.001[<0.001,<0.001]) | |
Brain | D1cc[Gy] | < 54Gy (E,3) | 46Gy [37,55] | |
OpticNrv_(R or L) | D0.03cc[Gy] | < 54Gy (D,1) Max[Gy] ≤ 45Gy (B) D0.1cc[Gy] < 54Gy (A,1) | 7.6cc [3.7,14] R 7.3cc [4.1,13] L | ≤ 54Gy Lee [41] (< 0.001[<0.001,<0.001]) |
OpticChiasm | D0.03cc[Gy] | D0.1cc[Gy] < 54Gy (A,1) | 10cc [4.4,20] | < 54Gy,NRG:HN004, BN003,Lee [42,52,41] (< 0.001[<0.001,<0.001]) < 55Gy,NRG:BN01,BN005 [47,48] (< 0.001[<0.001,<0.001]) |
Cochlea_(R or L) | Mean[Gy] | < 30Gy (D,3) | 9.8Gy [4.7,18] R 9.4Gy [4.5,19] L | <45Gy 30% Sensory neural hearing loss QUANTEC-Bhandare, Lee [20,41] (< 0.001[<0.001,<0.001]) |
Musc_Constrict_S | Mean[Gy] | < 50Gy (A,3) | 53Gy [45,57] | < 60Gy < 30% aspiration, Mortensen [23] (0.04 [0.1,0.46]) |
Musc_Constrict_I | Mean[Gy] | < 20Gy (A,1) | 36Gy [29,45] | |
Pharynx | Mean[Gy] | < 45Gy (B),(C,3) | 48Gy [43,53] | < 45Gy, NRG:HN003,HN004,3504, Lee [50,42,46,41] (0.51 [0.61,0.21]) < 50Gy > 20% Rate Dysphagia and aspiration, QUANTEC-Rancait [16] (0.65[0.13,0.61]) < 60Gy aspirations, Feng [30] (0.04 [0.01,0.26]) |



Current Recommendations
- •Implement routine and standardized collection of data such as diagnosis and staging in formats that can be easily extracted from electronic systems.
- •Adopt TG-263 nomenclature for all OARs and converge on a minimal set of TG-263 compliant target (PTV, CTV, GTV) names acceptable at each institution.
- •As a means of ensuring complete datasets, include the 13 structures contoured on ≥ 50% of patients in the majority (≥ 3/5) of institutions: brain(Brain), brainstem (Brainstem), spinal cord (SpinalCord), eyes (Eye_L, Eye_R), cochleas (Cochlea_L, Cochela_R), optic nerve structures (OpticNrv_L, OpticNrv_R, OpticChiasm), mandible (Bone_Mandible), parotids (Parotid_L, Parotid_R) and submandibular glands (Glnd_Submand_R, Glnd_Submand_L), oral cavity (Cavity_Oral), esophagus (Esophagus), larynx (Larynx), and constrictor muscles (Musc_Constric_I, Musc_Constric_S, or Pharynx) for all patients. At minimum, contour those that are within 3 cm of the PTVs. As per ASTRO's recent consensus paper, 5 other OAR structures should be included based on disease site treated and all OARs should be contoured following published atlases.
- •In data pooling applications provide at least the minimum set of 18 DVH metrics for reporting were identified for these 13 structures (● in Table 1).
- •Consistent with guidelines, critical structures of SpinalCord_PRV, Brainstem_PRV and OpticNrvs and OpticChiasm should be assigned priority 1 in RT planning.
- •For bilateral, parallel function structures (Parotid_L, Parotid_R, Glnd_Submand_L, Glnd_Submand_R) include both left and right structures if present (i.e. unresected)
- •If applicable, contour the larger and more inclusive OAR structures of Brain versus Lobe_Temporal and Cochlea versus division of Ear Middle and Ear_Inner.
- •Given reported relationships between dysphagia and dose to individual muscle constrictor components, separation of Musc_Constrict_S and Musc_Constrict_I is recommended versus Pharynx. 24,27,32
- •If using OAR-PTV volumes, contour the corresponding OAR volume. For high dose values, D0.03cc[Gy]) is recommended for data pooling (versus Max[Gy] or D0.1cc[Gy]) to ensure interoperability and consistency with recently published consensus guidelines. 41
- •Consider reducing constraint values for DVH metrics where median and Q3 values (Table 1) are well below standard limits set in the literature (e.g., Esophagus).
Discussion
References
- 1Franklin JM, Schneeweiss S. When and How Can Real World Data Analyses Substitute for Randomized Controlled Trials? Clin Pharmacol Ther. 2017;102(6):924-933. doi:10.1002/cpt.857
- 2Use of Electronic Health Record Data in Clinical Investigations Guidance for Industry. Published online 2018:15.
- 3Mayo CS, Matuszak MM, Schipper MJ, Jolly S, Hayman JA, Ten Haken RK. Big Data in Designing Clinical Trials: Opportunities and Challenges. Front Oncol. 2017;7:187. doi:10.3389/fonc.2017.00187
- 4Peters LJ, O'Sullivan B, Giralt J, et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol. 2010;28(18):2996-3001. doi:10.1200/JCO.2009.27.4498
- 5Wright JL, Yom SS, Awan MJ, et al. Standardizing Normal Tissue Contouring for Radiation Therapy Treatment Planning: An ASTRO Consensus Paper. Pract Radiat Oncol. 2019;9(2):65-72. doi:10.1016/j.prro.2018.12.003
- 6Grant SR, Smith BD, Mayo CS. The Charge to Liberate Siloed Radiation Oncology Treatment Data Through Uniform and Structured Documentation: A Commentary on American Society for Radiation Oncology and Commission on Cancer Recommendations. Pract Radiat Oncol. 2020;10(5):304-307. doi:10.1016/j.prro.2019.11.009
- 7Hayman JA, Dekker A, Feng M, et al. Minimum Data Elements for Radiation Oncology: An American Society for Radiation Oncology Consensus Paper. Pract Radiat Oncol. 2019;9(6):395-401. doi:10.1016/j.prro.2019.07.017
- 8Christodouleas JP, Anderson N, Gabriel P, et al. A Multidisciplinary Consensus Recommendation on a Synoptic Radiation Treatment Summary: A Commission on Cancer Workgroup Report. Pract Radiat Oncol. 2020;10(6):389-401. doi:10.1016/j.prro.2020.01.002
- 9Mayo CS, Moran JM, Bosch W, et al. American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology. Int J Radiat Oncol Biol Phys. 2018;100(4):1057-1066. doi:10.1016/j.ijrobp.2017.12.013
- 10Jackson A, Marks LB, Bentzen SM, et al. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S155-160. doi:10.1016/j.ijrobp.2009.08.074
- 11Mayo CS, Yao J, Eisbruch A, et al. Incorporating big data into treatment plan evaluation: Development of statistical DVH metrics and visualization dashboards. Adv Radiat Oncol. 2017;2(3):503-514. doi:10.1016/j.adro.2017.04.005
- 12Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10-19. doi:10.1016/j.ijrobp.2009.07.1754
- 13Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S36-41. doi:10.1016/j.ijrobp.2009.08.078
- 14Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S42-49. doi:10.1016/j.ijrobp.2009.04.095
- 15Deasy JO, Moiseenko V, Marks L, Chao KSC, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S58-63. doi:10.1016/j.ijrobp.2009.06.090
- 16Rancati T, Schwarz M, Allen AM, et al. Radiation dose-volume effects in the larynx and pharynx. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S64-69. doi:10.1016/j.ijrobp.2009.03.079
- 17Lawrence YR, Li XA, el Naqa I, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20-27. doi:10.1016/j.ijrobp.2009.02.091
- 18Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB. Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S86-93. doi:10.1016/j.ijrobp.2009.05.070
- 19Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S28-35. doi:10.1016/j.ijrobp.2009.07.1753
- 20Bhandare N, Jackson A, Eisbruch A, et al. Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S50-57. doi:10.1016/j.ijrobp.2009.04.096
- 21Li YC, Chen FP, Zhou GQ, et al. Incidence and dosimetric parameters for brainstem necrosis following intensity modulated radiation therapy in nasopharyngeal carcinoma. Oral Oncol. 2017;73:97-104. doi:10.1016/j.oraloncology.2017.08.011
- 22Yao CY, Zhou GR, Wang LJ, et al. A retrospective dosimetry study of intensity-modulated radiotherapy for nasopharyngeal carcinoma: radiation-induced brainstem injury and dose-volume analysis. Radiat Oncol. 2018;13(1):194. doi:10.1186/s13014-018-1105-z
- 23Mortensen HR, Jensen K, Aksglæde K, Behrens M, Grau C. Late dysphagia after IMRT for head and neck cancer and correlation with dose-volume parameters. Radiother Oncol. 2013;107(3):288-294. doi:10.1016/j.radonc.2013.06.001
- 24Eisbruch A, Kim HM, Feng FY, et al. Chemo-IMRT of oropharyngeal cancer aiming to reduce dysphagia: swallowing organs late complication probabilities and dosimetric correlates. Int J Radiat Oncol Biol Phys. 2011;81(3):e93-99. doi:10.1016/j.ijrobp.2010.12.067
- 25Eisbruch A, Schwartz M, Rasch C, et al. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys. 2004;60(5):1425-1439. doi:10.1016/j.ijrobp.2004.05.050
- 26Eisbruch A, Lyden T, Bradford CR, et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2002;53(1):23-28. doi:10.1016/s0360-3016(02)02712-8
- 27Caudell JJ, Schaner PE, Desmond RA, Meredith RF, Spencer SA, Bonner JA. Dosimetric factors associated with long-term dysphagia after definitive radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2010;76(2):403-409. doi:10.1016/j.ijrobp.2009.02.017
- 28Ozkaya Akagunduz O, Eyigor S, Kirakli E, et al. Radiation-Associated Chronic Dysphagia Assessment by Flexible Endoscopic Evaluation of Swallowing (FEES) in Head and Neck Cancer Patients: Swallowing-Related Structures and Radiation Dose-Volume Effect. Ann Otol Rhinol Laryngol. 2019;128(2):73-84. doi:10.1177/0003489418804260
- 29Kamal M, Mohamed ASR, Volpe S, et al. Radiotherapy dose-volume parameters predict videofluoroscopy-detected dysphagia per DIGEST after IMRT for oropharyngeal cancer: Results of a prospective registry. Radiother Oncol. 2018;128(3):442-451. doi:10.1016/j.radonc.2018.06.013
- 30Feng FY, Kim HM, Lyden TH, et al. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys. 2007;68(5):1289-1298. doi:10.1016/j.ijrobp.2007.02.049
- 31Dean J, Wong K, Gay H, et al. Incorporating spatial dose metrics in machine learning-based normal tissue complication probability (NTCP) models of severe acute dysphagia resulting from head and neck radiotherapy. Clin Transl Radiat Oncol. 2018;8:27-39. doi:10.1016/j.ctro.2017.11.009
- 32Chera BS, Fried D, Price A, et al. Dosimetric Predictors of Patient-Reported Xerostomia and Dysphagia With Deintensified Chemoradiation Therapy for HPV-Associated Oropharyngeal Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys. 2017;98(5):1022-1027. doi:10.1016/j.ijrobp.2017.03.034
- 33Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12(2):127-136. doi:10.1016/S1470-2045(10)70290-4
- 34Murdoch-Kinch CA, Kim HM, Vineberg KA, Ship JA, Eisbruch A. Dose-effect relationships for the submandibular salivary glands and implications for their sparing by intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(2):373-382. doi:10.1016/j.ijrobp.2007.12.033
- 35Jackson WC, Hawkins PG, Arnould GS, Yao J, Mayo C, Mierzwa M. Submandibular gland sparing when irradiating neck level IB in the treatment of oral squamous cell carcinoma. Med Dosim. 2019;44(2):144-149. doi:10.1016/j.meddos.2018.04.003
- 36Hawkins PG, Lee JY, Mao Y, et al. Sparing all salivary glands with IMRT for head and neck cancer: Longitudinal study of patient-reported xerostomia and head-and-neck quality of life. Radiother Oncol. 2018;126(1):68-74. doi:10.1016/j.radonc.2017.08.002
- 37Chen AM, Yoshizaki T, Wang PC, et al. Hazards of sparing the ipsilateral parotid gland in the node-positive neck with intensity modulated radiation therapy: Spatial analysis of regional recurrence risk. Adv Radiat Oncol. 2018;3(2):111-120. doi:10.1016/j.adro.2017.12.004
- 38Huang J, He T, Yang R, Ji T, Li G. Clinical, dosimetric, and position factors for radiation-induced acute esophagitis in intensity-modulated (chemo)radiotherapy for locally advanced non-small-cell lung cancer. Onco Targets Ther. 2018;11:6167-6175. doi:10.2147/OTT.S174561
- 39R: The R Project for Statistical Computing. Accessed November 26, 2021. https://www.r-project.org/
- 40Scutari M. Learning Bayesian Networks with the bnlearn R Package. Published online 2009. doi:10.18637/JSS.V035.I03
- 41Lee AW, Ng WT, Pan JJ, et al. International Guideline on Dose Prioritization and Acceptance Criteria in Radiation Therapy Planning for Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys. 2019;105(3):567-580. doi:10.1016/j.ijrobp.2019.06.2540
- 42Mell L. NRG HN004 Randomized Phase II/III Trial of Radiotherapy with Concurrent MEDI4736 (Durvalumab) vs. Radiotherapy with Concurrent Cetuximab in Patients with Locoregionally Advanced Head and Neck Cancer with a Contraindication to Cisplatin. Randomized Phase II/III Trial of Radiotherapy with Concurrent MEDI4736 (Durvalumab) vs. Radiotherapy with Concurrent Cetuximab in Patients with Locoregionally Advanced Head and Neck Cancer with a Contraindication to Cisplatin. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/nrg-hn004?filter=nrg-hn004
- 43Lee N. NRG HN001 Randomized Phase II and Phase III Studies of Individualized Treatment for Nasopharyngeal Carcinoma Based on Biomarker Epstein Barr Virus (EBV) Deoxyribonucleic Acid (DNA). Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/nrg-hn001?filter=nrg-hn001
- 44Trotti A. RTOG 1016 Phase III Trial of Radiotherapy Plus Cetuximab Versus Chemoradiotherapy in HPV-Associated Oropharynx Cancer. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-1016?filter=rtog-1016
- 45Rodriguez C. RTOG 1008 A Randomized Phase II/Phase III Study of Adjuvant Concurrent Radiation and Chemotherapy versus Radiation Alone in Resected High-Risk Malignant Salivary Gland Tumors. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-1008?filter=rtog-1008
- 46Gillison M. RTOG 3504 Safety Evaluations of Nivolumab (Anti-PD-1) Added to Chemoradiotherapy in Patients with Intermediate and High-Risk Local-Regionally Advanced Head and Neck Squamous Cell Carcinoma. Accessed November 26, 2021. https://www.rtog.org/Clinical-Trials/Foundation-Studies/3504
- 47Mehta M. NRG BN001 Randomized Phase II Trial of Hypofractionated Dose-Escalated Photon IMRT or Proton Beam Therapy Versus Conventional Photon Irradiation With Concomitant and Adjuvant Temozolomide in Patients With Newly Diagnosed Glioblastoma. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/nrg-bn001?filter=nrg-bn001
- 48Grosshans D. NRG BN005 A Phase II Randomized Trial of Proton vs. Photon Therapy (IMRT) for Cognitive Preservation in Patients with IDH Mutant, Low to Intermediate Grade Gliomas. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/nrg-bn005?filter=nrg-bn005
- 49Machtay M. RTOG 0920 A Phase III Study of Postoperative Radiation Therapy (IMRT) +/- Cetuximab for Locally-Advanced Resected Head and Neck Cancer. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-0920?filter=rtog-0920
- 50Bauman JE, Harris J, Uppaluri R, et al. NRG-HN003: Phase I and Expansion Cohort Study of Adjuvant Pembrolizumab, Cisplatin and Radiation Therapy in Pathologically High-Risk Head and Neck Cancer. Cancers (Basel). 2021;13(12):2882. doi:10.3390/cancers13122882
- 51Viswanathan AN, Moughan J, Miller BE, et al. NRG Oncology/RTOG 0921: A phase 2 study of postoperative intensity-modulated radiotherapy with concurrent cisplatin and bevacizumab followed by carboplatin and paclitaxel for patients with endometrial cancer. Cancer. 2015;121(13):2156-2163. doi:10.1002/cncr.29337
- 52Rogers L. NRG BN003 Phase III Trial of Observation Versus Irradiation for a Gross Totally Resected Grade II Meningioma. Accessed November 26, 2021. https://www.nrgoncology.org/Clinical-Trials/Protocol/nrg-bn003?filter=nrg-bn003
- 53Ng WT, Lee MCH, Hung WM, et al. Clinical outcomes and patterns of failure after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2011;79(2):420-428. doi:10.1016/j.ijrobp.2009.11.024
- 54Tagliaferri L, Budrukkar A, Lenkowicz J, et al. ENT COBRA ONTOLOGY: the covariates classification system proposed by the Head & Neck and Skin GEC-ESTRO Working Group for interdisciplinary standardized data collection in head and neck patient cohorts treated with interventional radiotherapy (brachytherapy). J Contemp Brachytherapy. 2018;10(3):260-266. doi:10.5114/jcb.2018.76982
- 55Lancellotta V, Guinot JL, Fionda B, et al. SKIN-COBRA (Consortium for Brachytherapy data Analysis) ontology: The first step towards interdisciplinary standardized data collection for personalized oncology in skin cancer. J Contemp Brachytherapy. 2020;12(2):105-110. doi:10.5114/jcb.2020.94579
- 56Schuler T, Kipritidis J, Eade T, et al. Big Data Readiness in Radiation Oncology: An Efficient Approach for Relabeling Radiation Therapy Structures With Their TG-263 Standard Name in Real-World Data Sets. Adv Radiat Oncol. 2019;4(1):191-200. doi:10.1016/j.adro.2018.09.013
- 57Cardan RA, Covington EL, Popple RA. Technical Note: An open source solution for improving TG-263 compliance. J Appl Clin Med Phys. 2019;20(9):163-165. doi:10.1002/acm2.12701
- 58Brouwer CL, Steenbakkers RJHM, Bourhis J, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83-90. doi:10.1016/j.radonc.2015.07.041
- 59Verbakel WFAR, Doornaert PAH, Raaijmakers CPJ, et al. Targeted Intervention to Improve the Quality of Head and Neck Radiation Therapy Treatment Planning in the Netherlands: Short and Long-Term Impact. Int J Radiat Oncol Biol Phys. 2019;105(3):514-524.doi:10.1016/j.ijrobp.2019.07.00
Article Info
Publication History
Publication stage
In Press Journal Pre-ProofFootnotes
Conflicts of Interest: Charles Mayo has a research grant from Varian Medical Systems
Ying Xiao has grants from NCI 2U24CA180803-06(IROC), 2U10CA180868-06(NRG)
Andrew MacDonald has a research grant from Varian Medical Systems
Funding: None
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy