Abstract
Purpose
Methods and Materials
Results
Conclusions
Introduction
- Bradley J.D.
- Paulus R.
- Komaki R.
- et al.
- Bradley J.D.
- Paulus R.
- Komaki R.
- et al.
- Zhang X.
- Li Y.
- Pan X.
- et al.
- Zhang X.
- Li Y.
- Pan X.
- et al.
Methods and Materials
Patients
Radiation treatment procedures
Endpoints and statistical analysis
Results
Patient characteristics
Characteristic | All, no. (%) | Proton no. (%) | IMRT no. (%) | P |
---|---|---|---|---|
No. of patients | 64 | 34 | 30 | |
Sex | ||||
Female | 41 (64.1) | 21 (61.8) | 20 (66.7) | .796 |
Male | 23 (35.9) | 13 (38.2) | 10 (33.3) | |
Median age, years | 67 (25-90) | 67 (25-85) | 66 (35-90) | .463 |
<65 | 28 (43.8) | 16 (47.1) | 12 (40.0) | .620 |
≥65 | 36 (56.3) | 18 (52.9) | 18 (60.0) | |
Ethnicity | ||||
White | 53 (82.8) | 28 (82.4) | 25 (83.3) | .989 |
Black | 4 (6.2) | 2 (5.9) | 2 (6.7) | |
Asian | 2 (3.1) | 1 (2.9) | 1 (3.3) | |
Others | 5 (7.8) | 3 (8.8) | 2 (6.7) | |
ECOG | ||||
0-1 | 61 (95.3) | 32 (94.1) | 29 (96.7) | 1.000 |
2 | 3 (4.7) | 2 (5.9) | 1 (3.3) | |
>2 | 0 | 0 | 0 | |
Smoking history | ||||
Never | 7 (10.9) | 6 (17.6) | 1 (3.3) | .109 |
Ever | 57 (89.1) | 28 (82.4) | 29 (96.7) | |
Median FEV1, L (range) | 2.2 (0.83-4.2) | 2.35 (0.83-4.2) | 1.78 (0.96-3.38) | .080 |
Median FEV1, % predicted (range) | 75.5 (39-149) | 84 (44-149) | 66 (39-113) | .020 |
Median DLCO, % predicted (range) | 63 (33-102) | 65 (33-102) | 62 (35-90) | .344 |
T stage | ||||
T1 | 10 (15.6) | 4 (11.8) | 6 (20) | .913 |
T2 | 17 (26.6) | 9 (26.5) | 8 (26.7) | |
T3 | 14 (21.9) | 8 (23.5) | 6 (20.0) | |
T4 | 23 (35.9) | 13 (38.2) | 10 (33.3) | |
N stage | ||||
N0 | 5 (7.8) | 3 (8.8) | 2 (6.7) | .370 |
N1 | 2 (3.1) | 0 (0.0) | 2 (6.7) | |
N2 | 42 (65.6) | 24 (70.6) | 18 (60.0) | |
N3 | 15 (23.4) | 7 (20.6) | 8 (26.7) | |
Stage | ||||
IIIA | 23 (35.9) | 12 (35.3) | 11 (36.7) | .824 |
IIIB | 37 (57.8) | 19 (55.9) | 18 (60.0) | |
IIIC | 4 (6.3) | 3 (8.8) | 1 (3.3) | |
Tumor histology | ||||
Adenocarcinoma | 36 (56.3) | 19 (55.9) | 17 (56.7) | .740 |
SCC | 21 (32.8) | 11 (32.4) | 10 (33.3) | |
NSCLC unspecified | 1 (1.6) | 0 (0.0) | 1 (3.3) | |
Small cell | 6 (9.4) | 4 (11.8) | 2 (6.7) | |
Induction chemotherapy | ||||
Yes | 15 (23.4) | 9 (26.5) | 6 (20.0) | .571 |
No | 49 (76.6) | 25 (73.5) | 24 (80.0) | |
Concurrent chemotherapy | ||||
Yes | 43 (67.2) | 19 (55.9) | 24 (80.0) | .061 |
No | 21 (32.8) | 15 (44.1) | 6 (20.0) | |
Adjuvant chemotherapy | ||||
Yes | 23 (35.9) | 13 (38.2) | 10 (33.3) | .796 |
No | 41 (64.1) | 21 (61.8) | 20 (66.7) | |
Any chemotherapy | ||||
Yes | 60 (93.8) | 31 (91.2) | 29 (96.7) | .820 |
No | 4 (6.3) | 3 (8.8) | 1 (3.3) | |
Receiving adjuvant radiation therapy (50-54 Gy) | ||||
Yes | 11 (17.2) | 7 (20.6) | 4 (13.3) | .443 |
No | 53 (82.8) | 27 (79.4) | 26 (86.7) | |
Surgery | ||||
Yes | 14 (21.9) | 9 (26.5) | 5 (16.7) | .381 |
No | 50 (78.1) | 25 (73.5) | 25 (83.3) | |
Immunotherapy | ||||
Yes | 23 (35.9) | 15 (44.1) | 8 (26.7) | .197 |
No | 41 (64.1) | 19 (55.9) | 22 (73.3) |
Dosimetry comparison
Characteristic | All | Proton | IMRT | P |
---|---|---|---|---|
Prescription dose (Gy/CGE) | 61.2 (50.4-74.0) | 61.2 (50.4-74.0) | 61.5 (50.4-66.6) | .820 |
Median target volumes, cm3 (range) | ||||
PTV | 599.1 (94.10-1639) | 607.9 (94.10-1243) | 587.6 (135.30-1639) | .845 |
GTV | 156.1 (1.39-647.8) | 173.5 (1.39-486.3) | 131.5 (28.16-647.8) | .445 |
CTV | 370 (37.49-1202) | 382.5 (37.49-729.3) | 334.2 (45.81-1202) | .755 |
Dosimetric comparison between proton and IMRT | ||||
Lung | ||||
Mean dose in Gy (CGE) | 15.78 (1.4-24.35) | 13.38 (5.11-24.35) | 17.89 (1.40-22.69) | .004 |
V5 (%) | 43 (5.21-73.83) | 34.19 (18.90-73.83) | 58.45 (5.21-72.42) | <.001 |
V10 (%) | 37.28 (3.61-55.77) | 29.26 (15.66-51.83) | 44.44 (3.61-55.77) | <.001 |
V20 (%) | 28.84 (1.86-42.27) | 24.29 (9.99-41.1) | 33.39 (1.86-42.27) | <.001 |
V30 (%) | 21.74 (1.30-33.55) | 19.99 (4.73-33.55) | 24.21 (1.30-32.61) | .127 |
V40 (%) | 17.27 (0-27.96) | 17.05 (2.70-27.96) | 18.88 (0.98-26.83) | .957 |
V50 (%) | 12.05 (0-23.84) | 12.99 (0.80-23.84) | 11.43 (0.70-22.19) | .264 |
V60 (%) | 5.84 (0-19.77) | 7.30 (0-19.77) | 4.52 (0-14.38) | .184 |
Lung-PTV | ||||
Mean dose in Gy (CGE) | 13.09 (1.28-19.77) | 9.70 (4.87-17.53) | 15.77 (1.28-19.77) | <.001 |
V5 (%) | 39.14 (5.01-70.67) | 29.02 (15.55-70.67) | 57.53 (5.01-69.34) | <.001 |
V10 (%) | 34.42 (3.41-55.19) | 23.58 (13.86-47.19) | 41.66 (3.41-55.19) | <.001 |
V20 (%) | 24.69 (1.66-35.55) | 18.81 (9.51-35.44) | 27.98 (1.66-35.55) | <.001 |
V30 (%) | 18.1 (1.10-27.17) | 14.27 (4.22-27.17) | 19.69 (1.10-26.82) | .015 |
V40 (%) | 11.8 (0.78-21.72) | 10.55 (2.18-21.72) | 12.96 (0.78-21.06) | .341 |
V50 (%) | 6.74 (0.09-17.25) | 6.98 (0.29-17.25) | 6.13 (0.09-13.71) | .400 |
V60 (%) | 1.25 (0-12.48) | 1.85 (0-12.48) | 1.1 (0-5.96) | .245 |
Esophagus | ||||
Mean dose in Gy (CGE) | 29.76 (10.78-60.43) | 28.19 (10.78-54.14) | 30.91 (17.67-60.43) | .023 |
V10 (%) | 58.28 (30.39-98.50) | 56.1 (30.39-97.06) | 64.53 (37.99-98.50) | .007 |
V20 (%) | 52.76 (16.46-95.18) | 51.5 (16.46-95.18) | 59.54 (34.89-94.10) | .028 |
V30 (%) | 48.80 (13.57-93.49) | 45.5 (13.57-93.49) | 53.1 (18.5-90.88) | .038 |
V40 (%) | 42.8 (6.48-91.70) | 41.92 (6.48-91.70) | 45.67 (8.610-88.57) | .223 |
V50 (%) | 34.19 (0-89.30) | 32.35 (0-89.30) | 36.63 (0.84-85.6) | .423 |
V55 (%) | 27.17 (0-83.44) | 26.36 (0-83.39) | 30.56 (0-83.44) | .134 |
V60 (%) | 15.26 (0-79.16) | 16.52 (0-78.81) | 14.6 (0-79.16) | .715 |
Heart | ||||
Mean dose in Gy (CGE) | 11.65 (0-39.51) | 6.95 (0-39.51) | 14.04 (0-35.43) | .001 |
V5 (%) | 32.16 (0-100.0) | 22.12 (0-100) | 55.44 (0-98.39) | <.001 |
V10 (%) | 28.32 (0-99.80) | 18.87 (0-99.80) | 41.9 (0-85.60) | <.001 |
V20 (%) | 19.98 (0-94.63) | 14.49 (0-94.63) | 26.68 (0-71.33) | .006 |
V30 (%) | 13.2 (0-83.45) | 10.86 (0-83.45) | 18.06 (0-58.18) | .020 |
V35 (%) | 11.5 (0-71.30) | 9.36 (0-71.30) | 15.18 (0-51.27) | .043 |
V40 (%) | 9.94 (0-44.89) | 7.95 (0-44.89) | 13.06 (0-43.39) | .079 |
V50 (%) | 6 (0-36.57) | 5.83 (0-26.09) | 6.155 (0-36.57) | .312 |
V60 (%) | 1.49 (0-20.91) | 1.17 (0-20.36) | 1.535 (0-20.91) | .838 |
Spinal cord | ||||
D0.03cc Gy (CGE) | 43.78 (0.63-53.35) | 37.54 (0.63-49.96) | 45.83 (31.4-53.35) | <.001 |
Treatment toxicities
All | Proton | IMRT | P | |
---|---|---|---|---|
Esophagitis | ||||
Grade 0 | 7 (10.9) | 4 (11.8) | 3 (10.0) | .600 |
Grade 1 | 19 (29.7) | 8 (23.5) | 11 (36.7) | |
Grade 2 | 29 (45.3) | 16 (47.1) | 13 (43.3) | |
Grade 3 | 9 (14.1) | 6 (17.6) | 3 (10) | |
Grade 4 | 0 | 0 | 0 | |
Grade 5 | 0 | 0 | 0 | |
Grade 0-1 | 26 (40.6) | 12 (35.3) | 14 (46.7) | .842 |
Grade ≥ 2 | 38 (59.4) | 22 (64.7) | 16 (53.3) | |
Pneumonitis | ||||
Grade 0 | 4 (6.3) | 3 (8.8) | 1 (3.3) | .198 |
Grade 1 | 41 (64.1) | 24 (70.6) | 17 (56.7) | |
Grade 2 | 11 (17.2) | 3 (8.8) | 8 (26.7) | |
Grade 3 | 4 (6.3) | 2 (5.9) | 2 (6.7) | |
Grade 4 | 2 (3.1) | 0/0 | 2 (6.7) | |
Grade 5 | 2 (3.1) | 2 (5.9) | 0 | |
Grade 0-1 | 45 (70.3) | 27 (79.4) | 18 (60.0) | .107 |
Grade ≥ 2 | 19 (29.7) | 7 (20.6) | 12 (40.0) | |
Acute dermatitis | ||||
Grade 0 | 4 (6.3) | 1 (2.9) | 3 (10.0) | .379 |
Grade 1 | 38 (59.4) | 19 (55.9) | 19 (63.3) | |
Grade 2 | 19 (29.7) | 13 (38.2) | 6 (20.0) | |
Grade 3 | 3 (4.7) | 1 (2.9) | 2 (6.7) | |
Grade 4 | 0 | 0 | 0 | |
Grade 5 | 0 | 0 | 0 | |
Grade 0-1 | 42 (65.6) | 20 (58.8) | 22 (73.3) | .294 |
Grade ≥2 | 22 (34.4) | 14 (41.2) | 8 (26.7) | |
Acute weight loss (lbs) | ||||
Grade 0 | 41 (64.1) | 19 (55.9) | 22 (73.3) | .139 |
Grade 1 | 17 (26.6) | 11 (32.4) | 6 (20.0) | |
Grade 2 | 5 (7.8) | 4 (11.8) | 1 (3.3) | |
Grade 3 | 1 (1.6) | 0 | 1 (3.3) | |
Grade 4 | 0 | 0 | 0 | |
Grade 5 | 0 | 0 | 0 | |
Grade 0-1 | 58 (90.6) | 30 (88.2) | 28 (93.3) | .345 |
Grade ≥ 2 | 6 (9.4) | 4 (11.8) | 2 (6.7) |

Locoregional control and survival analysis

Discussion
Yu N, DeWees TA, Liu C, et al. Proton therapy versus intensity-modulated radiation therapy: The Mayo Clinic Experienc. Adv Radiat Oncol In press. https://doi.org/10.1016/j.adro.2019.08.001.
Patient no. | Proton technology | Overall survival | Locoregional control | Pneumonitis | Esophagitis | |
---|---|---|---|---|---|---|
Present study | 34 | Scanning beam | Median, 41.6 mo | 59.7% | Grade 2+, 20.6%; Grade 3+, 11.8% | Grade 2+, 64.7%; Grade 3+, 17.6% |
Oshiro et al 22 | 57 | Passive scatter | Median, 21.3 mo | 2-y, 64.1% | Acute grade 2+, 12.3%; Acute grade 3+, 5.3% | Grade 2+, 1.8%; Grade 3+, 0% |
Hatayama et al 23 | 27 | Passive scatter | 2-y, 51.5% | 1-y local control, 68.1%; 2-y local control, 36.4% | Grade 2+, 29.6%; Grade 3+, 7.4% | Grade 2+, 22.2%; Grade 3+, 3.7% |
Chang et al 20 | 64 | Passive scatter | Median, 26.5 mo | 72% | Grade 2+, 28%; Grade 3+, 12% | Acute grade 2+, 36%; Acute grade 3+, 8%; Late grade 2+, 9%; Late grade 3+, 4% |
Liao et al 13 | 57 | Passive scatter | Median, 26.1 mo | 1-y local control, 89.5%; 5-y, ~65% (estimated from figure) | 1-y grade 3+, 10.5%; | |
Elhammali et al 21 | 51 | Intensity modulated proton therapy | Median, 33.9 mo | 64.5% | Grade 2+, 15%; Grade 3+, 0% | Grade 2+, 49%; Grade 3+, 6% |
Yu et al 24 Yu N, DeWees TA, Liu C, et al. Proton therapy versus intensity-modulated radiation therapy: The Mayo Clinic Experienc. Adv Radiat Oncol In press. https://doi.org/10.1016/j.adro.2019.08.001. | 33 | Intensity modulated proton therapy | 1-y, 68% | 1-y, 86% | Grade 3, 6.1% | Grade 3, 6.1% |
- Bradley J.D.
- Paulus R.
- Komaki R.
- et al.
- Yovino S.
- Kleinberg L.
- Grossman S.A.
- Narayanan M.
- Ford E.
Comparing Photon Therapy to Proton Therapy to Treat Patients with Lung Cancer, 2018. ClinicalTrials.gov identifier: NCT01993810. Available at: https://clinicaltrials.gov/ct2/show/NCT01993810. Accessed April 9, 2020.
Supplementary data
References
- The IASLC Lung Cancer Staging Project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer.J Thorac Oncol. 2016; 11: 39-51
- Cancer statistics, 2019.CA: Can J Clin. 2019; 69: 7-34
- Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study.Lancet Oncol. 2015; 16: 187-199
- Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: An international individual patient data meta-analysis.Int J Radiat Oncol Biol Phys. 2013; 85: 444-450
- Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: A secondary analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial.J Clin Oncol. 2017; 35: 56-62
- Heart dose is an independent dosimetric predictor of overall survival in locally advanced non-small cell lung cancer.J Thorac Oncol. 2017; 12: 293-301
- Challenge of proving the value of proton therapy in an unselected patient population in the era of precision oncology: The fallacy of a one-size-fits-all strategy in radiotherapy for lung cancer.J Clin Oncol. 2018; 36: 2003-2004
- An in-silico comparison of proton beam and IMRT for postoperative radiotherapy in completely resected stage IIIA non-small cell lung cancer.Radiat Oncol. 2013; 8: 144
- Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: A virtual clinical study.Int J Radiat Oncol Biol Phys. 2010; 77: 357-366
- Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II-III inoperable non-small cell lung cancer.Radiother Oncol. 2015; 115: 367-372
- A phase 2 trial of concurrent chemotherapy and proton therapy for stage iii non-small cell lung cancer: Results and reflections following early closure of a single-institution study.Int J Radiat Oncol Biol Phys. 2016; 95: 517-522
- National Cancer Database analysis of proton versus photon radiation therapy in non-small cell lung cancer.Int J Radiat Oncol Biol Phys. 2017; 97: 128-137
- Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer.J Clin Oncol. 2018; JCO2017740720
- A treatment planning comparison of passive-scattering and intensity-modulated proton therapy for typical tumor sites.J Radiat Res. 2012; 53: 272-280
- Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC.New Engl J Med. 2018; 379: 2342-2350
- Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: A propensity matched analysis of the relative risk of proton versus photon-based radiation therapy.Radiother Oncol. 2018; 128: 154-160
- Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer: Clinical outcome, dosimetry, and feasibility.Strahlenther Onkol. 2016; 192: 913-921
- Motion mitigation for lung cancer patients treated with active scanning proton therapy.Med Phys. 2015; 42: 2462-2469
- Dose calculations for external photon beams in radiotherapy.Phys Med Biol. 1999; 44: R99-R155
- Proton beam radiotherapy and concurrent chemotherapy for unresectable stage III non-small cell lung cancer: Final results of a phase 2 study.JAMA Oncol. 2017; 3e172032
- Clinical outcomes after intensity-modulated proton therapy with concurrent chemotherapy for inoperable non-small cell lung cancer.Radiother Oncol. 2019; 136: 136-142
- Results of proton beam therapy without concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer.J Thorac Oncol. 2012; 7: 370-375
- Preliminary results of proton-beam therapy for stage III non-small-cell lung cancer.Cur Oncol. 2015; 22: e370-e375
Yu N, DeWees TA, Liu C, et al. Proton therapy versus intensity-modulated radiation therapy: The Mayo Clinic Experienc. Adv Radiat Oncol In press. https://doi.org/10.1016/j.adro.2019.08.001.
- Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer.Cancer Invest. 2013; 31: 183-188
- Severity, etiology and possible consequences of treatment-related lymphopenia in patients with newly diagnosed high-grade gliomas.CNS Oncol. 2012; 1: 149-154
- The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells.Cancer Invest. 2013; 31: 140-144
Comparing Photon Therapy to Proton Therapy to Treat Patients with Lung Cancer, 2018. ClinicalTrials.gov identifier: NCT01993810. Available at: https://clinicaltrials.gov/ct2/show/NCT01993810. Accessed April 9, 2020.
- The quest for evidence for proton therapy: Model-based approach and precision medicine.Int J Radiat Oncol Biol Phys. 2016; 95: 30-36
- A quantitative clinical decision-support strategy identifying which patients with oropharyngeal head and neck cancer may benefit the most from proton radiation therapy.Int J Radiat Oncol Biol Phys. 2019; 104: 540-552
- Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG Thoracic and Lymphoma Subcommittee.Int J Radiat Oncol Biol Phys. 2017; 99: 41-50
Article info
Publication history
Footnotes
Sources of support: This work had no specific funding.
Disclosures: Dr Rengan has had travel/food funding from IBA, and consulting fees/food from AstraZeneca.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy